ANNUAL RESEARCH REPORT 2002-03

ON-FARM RESEARCH DIVISION BANGLADESH AGRICULTURAL RESEARCH INSTITUTE GAZIPUR 1701

Annual Research Report 2002-03

Program Leader

Dr. MAbu Sufian

Compiled and edited by

Dr. M A Quayyum Dr. Mustaque Ahmed Dr. M Yusuf Ali Dilwar A Choudhury M Akhtar Hossain

Word Processed by

S. M. Obaidur Rahman M Abdul Jabber

ON-FARM RESEARCH DIVISION Bangladesh Agricultural Research Institute Gazipur 1701

Preface

On-Farm Research Division (OFRD) of Bangladesh Agricultural Research Institute (BARI) is going to publish the research reports of experiments conducted during 2001-02 and rabi season 2002-03 at different Farming System Research and Development (FSRD) and Multilocation Testing (MLT) sites across the country. The mandate of OFRD is to conduct research for the improvement of existing farming system and testing and validation of on-station technologies under a wide range of agro-elimatic situation for the fine tuning. In this regard, major thrust was given on the improvement of existing cropping systems through introduction of improved varieties, crop management as well as soil fertility management practices.

Emphasis was also given in improvement of existing eropping system practiced by the farmers' with introduction of new erops and varieties for coastal, rainfed and hill areas to develop suitable technologies for the problematic soils of Bangladesh. Similarly, Soil fertility management is another important issue need to be addressed comprehensively for sustainable erop production. Priority was given on eropping pattern based balanced fertilization for major ACZs and integrated plant nutrient management (IPNS) to maintain and improve soil fertility. Research report on Socio-geonomic studies, Integrated farming and On-farm verification of advanced lings and technologies were also included in this report.

I hope this report will be very useful to the researchers, GO, NGO and extension personnel working in this field.

Dr. M Abu Sufian Chief Scientific Officer OFRD, BARI, Gazipur

Project Title of the Experiments
Integrated Soil Fertility and Fertilizer Management
Subproject: Cropping pattern based fertilizer management
Development of fertilizer recommendation for different cropping patterns and environments
Effects of Rice straw on the performance of Boro-Fallow-T.Aman rice system
Sustaining crop productivity and soil health through integrated fertilizer management
Subproject: Crop response to added nutrients
Response of crops grown in different cropping patterns and environments to added fertilizer nutrients
Effects of different levels of magnesium on the performance of Potato, Tomato & Maize
Subproject: Verification of fertilizer management practices
Effect of Urea super granule (USG) as a source of nitrogenous fertilizer on upland vegetables and fruits
Effect of variety and nitrogen fertilizer management on the yield of Tomato at Shibpur MLT site, Narsinghdi
Effect of different levels and methods of nitrogen application on the growth and yield of Cauliflower
Effect of boron on Mustard
Effect of different levels of boron on the performance of Papaya
Effect of boron on yield of wheat
Effect of N source on T.Aus and T.Aman rice in Ganges Tidal Floodplain Zone
Improvement of Existing Cropping systems
Study on the performance of Wheat varieties developed by BARI
Yield potentiality of mustard through agronomic manipulation
Performance of different Chickpea varieties
Comparative performance of some promising Chickpea varieties/lines
Multilocation yield trial of Mungbean
Effects of seed cormel size and plant spacing on the yield of Mukhikachu
Agro-economic evaluation of Wheat-Jute-Mungbean cropping pattern in medium highland under partially irrigated condition
Agro-economic evaluation of Mustard-Boro- T.Aman cropping pattern in medium highland under irrigated condition
Coastal farming
Effect of cultural practices on the performance of different crops in saline area
Screening of different Rabi crops against tolerance to soil salinity in saline area
Screening of different Oil crops in saline area during rabi season
Performance of different Groundnut varieties
On-farm adaptive trial of advanced lines of Groundnut
On-farm adaptive trial of advance lines of Groundnut
Performance of different Soybean varieties
On-farm adaptive trial of advance lines of Sunflower in saline area
Yield performance of mungbean as affected by salinity in coastal area
Effect of different mulches on Potato cultivation in saline area
Screening of Potato varieties for coastal area
On-farm evaluation of BARI Sweet potato varieties
Adaptive yield trial of Barley for saline area

CONTENTS

Project Title of the Experiments			
Adaptive yield trial of Barley for coastal area			
Rainfed farming			
Response of T.Aman-Chickpea cropping pattern to applied phosphorus in the High Barind Tract, Bangladesh			
Performance of five drought tolerant and wilt resistant Chickpea genotypes under High Barind conditions			
Advanced yield trail of Chickpea			
Study on the seed enrichment of Mustard with boron to minimize boron deficiency in the soil			
Hill farming			
Intercropping carrot with hybrid maize at different planting systems at hilly areas in Bandarban			
Inter-cropping of hybrid maize with Bushbean at different fertilizer levels in Bandarban			
An adaptive trial of different varieties of Potato at hilly areas in Bandarban			
On-farm trial of BARI Chickpea varieties at hilly areas in Bandarban			
On-farm trial of BARI Stem amaranth variety at hilly areas in Bandarban			
Feasibility study of pointed gourd at hilly areas in Bandarban			
On-farm trials with advance lines and technologies			
On-farm adaptability trial of some promising rape Mustard varieties/lines			
Farmers field trial of Chickpea			
On-farm trial to evaluate the effect of seed source on BGM incidence in BARI Chola-5			
Bread Wheat adaptive line trials at farmers' field condition			
Performance of wheat through Power seeder compare to traditional method			
On-farm verification trial of Hybrid maize			
On-farm trial of Radish varieties			
On-farm trial of Tomato varieties			
On-farm trial of early Brinjal variety			
Dissemination of newly improved varieties of Panikachu			
Dissemination of newly improved varieties of Mukhikachu			
Adaptive trial of developed and advance lines of Groundnut at farmers' field			
Dissemination of newly improved varieties of Sweet potato			
Studies of Socio-economics			
A study on farmer's practice of growing Lotkon (Baccaurea sapida) at Shibpur, Narsingdi			
Yield gap analysis of Potato under different management situation in Bandarban area			
Yield gap analysis of wheat under different management situation at FSRD site, Goyeshpur, Pabna			
Fertilizer management in major cropping patterns at Jessore and Panchagarh District			
Integrated Farming			
Narikeli, Jamalpur			
Goyeshpur, Pabna			
Golapganj, Sylhet			
Lebukhali, Patuakhali			
Palima, Tangail			
Technology Transfer			
Appendix			
List of Scientists involved with On-Farm Research Division			

Subproject: Cropping Pattern Based Fertilizer Management

DEVELOPMENT OF FERTILIZER RECOMMENDATION FOR DIFFERENT CROPPING PATTERNS AND ENVIRONMENTS

Abstract

The experiment was conducted at different locations covering the major AEZs of the country to develop a cropping pattern based fertilizer recommendation for dominant cropping patterns under different AEZ. A total of 16 (sixteen) dominant cropping patterns across the country were tested against six different fertilizer management packages (soil test based fertilizer dose for MYG & HYG, IPNS for HYG, FRG '97, farmers practice and absolute control). In general, higher yield as well as gross margin was recorded from STB fertilizer dose for HYG (T₂) and IPNS (T₃) treatment over the locations. But marginal benefit cost ratio (MBCR) over control was higher in AEZ based fertilizer recommendation (FRG '97) and in STB fertilizer dose for MYG & HYG as well. In IPNS treatment due to cost of organic manure MBCR was less compared with other treatments. At some locations the experiment was completed for three cycles and recommendation were made and considering yield, economic return and long term soil fertility management were suggested for different cropping patterns.

Introduction

Soil fertility is a dynamic property which varies with crops, cropping intensity and input use. More than 50% of our cultivated soil contain organic matter below the critical level (1.5%). Annual depletion of plant nutrients in the intensively cropped area ranges from 180 to more than 250 kg/ha. High and medium highland comprising 60% of total cultivated land which is in most cases deficient in essential nutrients such as nitrogen, phosphorus, potassium and sulphur. The low organic matter content, higher cropping intensity, improper cropping sequence and faulty management practices are the major causes of depletion of soil fertility. Imbalance use of fertilizers is another serious problem for the country. Previous survey revealed that farmers in many areas in Bangladesh applied nitrogenous fertilizer higher than the recommended dose for some crops. They usually did not use any organic fertilizers. Scarcity of fuel led them to use cowdung and crop residues as domestic fuel. Farmers usually use of fertilizers on single crop basis without considering the whole cropping pattern. But some of the nutrients by now knew to have considerable residual effect on the succeeding crops. Recently BARC developed a national fertilizer recommendation guide '97 that needs to be further updated and verified for different dominant cropping patterns at different environments. Therefore, it is very important to develop a cropping pattern based fertilizer recommendation under different agroecological conditions.

Objectives

- To find out a cropping pattern based fertilizer recommendation for dominant cropping patterns
- To determine the economic use of fertilizer in promising pattern

Materials and Methods

The experiment was conducted at different locations under different AEZs on different cropping patterns during 2001-02. A total of 16 dominant cropping patterns were tested at 34 different locations. The experiment was laid out in RCB design with six dispersed replications. The following six fertilizer management packages were tested-

T ₁ (ED1)	=	Estimated mineral fertilizer dose for moderate yield goal
T ₂ (ED2)	=	Estimated mineral fertilizer dose for high yield goal
T ₃ (INM)	=	Integrated Nutrient Management for HYG
T ₄ (FRG '97)	=	Fertilizer dose from BARC Fertilizer Recommendation Guide'97
T ₅ (FP)	=	Farmers' practice
T ₆ (Control)	=	Absolute control

The treatment concept was to compare the soil test based (STB) mineral fertilizer dose for High Yield Goal (HYG), Moderate Yield Goal (MYG), the high yield goal integrated with organic manure with

current BARC's Fertilizer Recommendation Guide '97 as well as the farmers prevailing practices. Details of the site characteristics and crop management are given in appendix table 1 & 2. The different cropping patterns studied at different locations are as follows-

Sl #	Cropping pattern	Location
1.	Mustard-Boro-T.Aman	Melandah, Muktagacha, Gabtali, Bagherpara
2.	Wheat-Jute-T.Aman	Sherpur, Kishoregonj, Goyeshpur
3.	Boro-T.Aman	Kendua, Phulpur, Netrokona, Laksam, Ishan Gopalpur, Sujanagar, Kolaroa, Satkaniya, Joypurhat,
4.	Potato-Jute-T.Aman	Narikeli
5.	Groundnut-T.Aman	Laxmipur, Atkopalia, Natore
6.	Potato-T.Aman	Barind, Paba
8.	Potato-Boro-T.Aman	Syedpur
9.	Potato-T.Aus-T.Aman	Chandina
10.	Onion-T.Aus-T.Aman	Kushtia
11.	T.Aus-T.Aman	Golapganj, Moulvibazar, Jhalokati
12.	Mungbean-T.Aus-T.Aman	Bhola
13.	Potato-Jute	Munshiganj
14.	Mustard-Boro	Manikganj, Kaliakoir
15.	Chilli - T.Aman	Lebukhali
16.	Sesame - T.Aman	Dumuria

Different cropping patterns tested in different locations

Fertilizer dose (Kg/ha) of different cropping patterns tested in different locations

Site: Narikeli, Jamalpur

Treatment	Potato (N-P-K-S-Zn-MOC)	Jute (N-P-K-S)	T.Aman (N-P-K-S)
T_1	110-20-75-10-2-0	80-6-40-2	80-7-40-8
T_2	150-30-125-15-3-0	120-8-60-3	100-8-50-12
T_3	130-20-100-15-3-500	120-8-60-3	100-8-50-12
T_4	90-15-50-10-1-0	40-7-20-3	60-8-30-4
T ₅	120-20-80-0-0-0	30-5-30-0	60-12-30-0
T_6	0-0-0-0-0-0	0-0-0-0	0-0-0-0

Site: Melandah, Jamalpur

Treatment	Mustard (N-P-K-S-Zn-B-MOC)	Boro (N-P-K-S-Zn-MOC)	T.Aman (N-P-K-S-MOC)
T ₁	81-6-23-14-4-1-0	143-7-46-10-4-0	100-4-46-14-0
T_2	53-5-19-14-4-1-500	117-3-42- 10-4-500	49-20-42-10-0
T_3	58-4-16-10-3-1-0	102-5-33-7-3-0	61-4-25-4-0
T_4	87-13-15-14-0	144-38-49-11-8-0	115-14-22-11-0
T_5	0-0-0-0-0-0-0	0-0-0-0-0-0	0-0-0-0-0

Site: Sherpur, Jamalpur

Treatment	Wheat (N-P-K-S-Zn-MOC)	Jute (N-P-K-S)	T.Aman (N-P-K-S)
T_1	100-20-50-17-1-0	80-15-50-10	70-10-40-7
T_2	125-30-75-27-1.5-0	120-20-80-20	100-15-50-10
T_3	75-10-50-27-1.5-500	90-10-70-20	75-7-44-10
T_4	80-17-40-12-1.0-0	30-4-15-20	70-8-25-4
T ₅	30-22-28-0-0-0	30-25-31-12	58-3-31-0
T_6	0-0-0-0-0	0-0-0-0	0-0-0-0

Site: Muktagacha, Mymensingh

Treatment	Mustard (N-P-K-S)	Boro rice (N-P-K-S)	T.Aman rice (N-P-K-S)
T_1	47-21-34-2	70-12-14-4	47-8-7-3
T_2	65-27-49-2.3	96-18-19-5	64-10-52-3.8
T ₃	59-25-44-20 + CD @ 5t/ha	86-14-10-5	64-10-52-3.8
T_4	55-10-20-10	100-9-30-5	60-8-30-4
T_5	50-35-40-3	120-14-23-11	84-15-20-7
T_6	0-0-0-0	0-0-0-0	0-0-0-0

Site: Gabtali, Bogra

Traatmant	Mustard	Boro rice	T.Aman rice
Treatment	(N-P-K-S-Zn-B-Oilcake)		
T_1	65-28-29-14-1-0.5-0	94-20-47-11-1.3-0	65-15-33-7-1-0
T_2	88-37-42-17-1.5-0.5-0	132-29-66-16-2-0	88-17-42-9-1.5-0
T_3	68-30-37-17-1.5-0.5-400	112-22-61-16-2-0-400	68-10-37-9-1.5-0-400
T_4	65-15-30-15-1-1-0	100-15-40-10-1-0	65-5-30-3-0
T5	52-15-27-140-0	69-12-26-7-0-0	52-10-26-0-0
T_6	0-0-0-0-0-0-0	0-0-0-0-0-0-0	0-0-0-0-0-0-0

Site: Joypurhat, Bogra

Treatments	Boro	T.Aman
Treatments	(N-P-K-S-Zn)	(N-P-K-S-Zn)
T_1	97-25-60-17-105-0	67-11-42-6-0
T_2	136-35-83-23-2.0	91-14-54-8-0
T_3	121-30-68-23-2.0-CD 5 t/ha	76-9-44-8-0- CD 5 t/ha
T_4	110-25-65-15-1	75-12-40-5-0
T ₅	87-26-40-3-1.0	71-10-23-0-0
T_6	0-0-0-0-0	0-0-0-0-0

Site: Bagherpara, Jessore

Treatment	Mustard	Boro	T.Aman
	(N-P-K-S-Zn)	(N-P-K-S-Zn)	(N-P-K-S-Zn)
T_1	61-11-6-24-0	90-5-0-9-0	61-4-0-7-0
T_2	86-15-11-30-0	125-7-0-12-0	83-5-0-9-0
T_3	81-12-6-30-0 + 5 t/ha CD	125-7-0-12-0	83-5-0-9-0
T_4	61-11-6-24-0	100-20-35-10-2	70-6-20-40-0
T_5	86-30-16-6-0	135-57-45-17-4	135-57-45-17-4
T_6	0-0-0-0-0	0-0-0-0-0	0-0-0-0

4

Treatments	Wheat	Jute	T.Aman
Treatments	(N-P-K-S)	(N-P-K-S)	(N-P-K-S)
T_1	71-28-10-8	73-18-10-10	64-17-17-4
T_2	101-38-15-12	103-25-14-14	87-20-22-5
T_3	91-32-7-12+CD.5 t/ha	103-25-14-14	87-20-22-5
T_4	50-10-25-7	30-4-15-0	35-4-15-3
T ₅	42-8-5-0	23-0-0-0	64-10-13-0
T_6	0-0-0-0	0-0-0-0	0-0-0-0

Site: Kishoregonj

Site: Goyeshpur, Pabna

Treatment	Wheat (N-P-K-S-Zn-B-CD)	Jute (N-P-K-S)	T.Aman (N-P-K-S-Zn)
T ₁	75-26-17-20-2.5-0.3	71-8-8-8	60-8-2-5
T_2	107-35-24-29-3.5-0.5	94-11-11-11	80-9-3-7
T ₃	82-26-19-29-3.5-0.5+5000	94-11-11-11	80-9-3-7
T_4	90-20-35-10-2-0.5	65-7-20-4	70-8-20-4
T5	64-26-17-0-0-0	35-11-25-1.36	75-16-29-4-6
T_6	0-0-0-0-0-0	0-0-0-0	0-0-0-0

Site: Kendua, Kishoreganj

Treatments	Boro	T.Aman
Treatments	(N-P-K-S-Zn)	(N-P-K-S-Zn)
T1	75-26-48-10-0.6	46-18-34-7-0.5
T_2	105-37-69-15-1.08	70-22-43-9-0.83
T_3	97-35-35-15-1.08 + 4 t/ha straw residue	62-20-11-9-0.83
T_4	100-15-40-10-1	60-8-30-4-0
T5	105-24-37-13-0	58-14-25-0-0
T_6	0-0-0-0-0	0-0-0-0-0

Site: Phulpur, Mymensingh

Treatment	Boro rice (N-P-K-S-Zn)	T.Aman rice (N-P-K-S-Zn)
T1	100-10.5-40-13.5-1.0	67-4.5-28-4-0
T_2	140-14.7-55-19-1.3	94-5.5-36-5.5-0
T_3	130-9.7-46-19-1.3	94-5.5-36-5.5-0
T_4	100-15-40-10-1.0	60-8-30-4-0
T_5	108-20.4-26-4.9-0	84-15-20-7-0
T_6	0-0-0-0-0	0-0-0-0

Site: Netrakona, Mymensingh

Treatment	Boro rice (N-P-K-S-Zn)	T.Aman rice (N-P-K-S-Zn)
T ₁	95-29.5-37.6-12.2-0	65.5-9.7-27-3.7-0
T_2	134-42.2-52.6-17.1-0	89.3-11.6-35-4.9-0
T_3	124-36.2-42.6-17.1-0	89.3-11.6-35-4.9-0
T_4	100-15.0-40.0-10.0-1.0	60-8-30-4-0
T_5	120-18-20-5-0	92-16-23-8-0
T_6	0-0-0-0-0	0-0-0-0

Treatment	Boro	T.Aman
	(N-P-K-S)	(N-P-K-S)
T_1	83-21-40-3	57-9-25-2
T_2	116-30-55-5	78-12-32-3
T ₃	106-25-45-5+CD 10t/ha	78-12-32-3
T_4	100-15-40-10	60-8-30-4
T ₅	100-30-60-4	80-16-20-2
T_6	0-0-0-0	0-0-0-0

Site: Ishan Gopalpur, Faridpur

Treatment	Boro (N-P-K-S-Zn-CD)	T.Aman (N-P-K-S)
T ₁	64-18-25-10-1.5-0	44-9-4-3
T_2	90-25-30-14-2-0	60-10-4.5-4
T_3	75-20-15-40-2-5 t/ha	60-10-4.5-4
T_4	90-20-25-10-1.5-0	60-4-12-2
T ₅	100-29-37-12-4-0	85-30-20-20
T_6	0-0-0-0-0-0	0-0-0-0

Site: Sujanagar, Pabna

Treatment	Boro	T.Aman
	(N-P-K-S-Zn-B-CD)	
T_1	94-27-20-16-0.29-1.0-0	64-13-15-5-0.2-1
T_2	133-38-20-22-0.38-1.0-0	87-16-15-7-0.3-1
T_3	108-18-3-22-0.38-+5000	87-16-15-7-0.3-1
T_4	100-20-35-10-1.5-0	70-8-20-4-0
T ₅	93-29-35-0-0-0	113-21-29-15-0
T_6	0-0-0-0-0-0	0-0-0-0-0

Site: Feni, Noakhali

Treatment	Boro	T.Aman
	(N-P-K-S-Zn-B-CD)	
T_1	130-33-86-20-1.5-0	90-12-60-12-1
T_2	183-47-120-28-2-0	122-14-77-16-1.5
T ₃	168-42-105-28-2-0 + CD 5t/ha	122-14-77-16-1.5
T_4	95-20-40-10-1	65-7-25-4-0
T5	85-20-60-0	76-16-30-0
T_6	0-0-0-0-0-0	0-0-0-0-0

Site: Satkaniya, Chittagong

Treatment	Boro	T.Aman
	(N-P-K-S-Zn-B-CD)	
T_1	89-20-54-16-0-0	61-7-38-4
T_2	126-28-75-23-0	84-9-48-7
T_3	116-22-65-23-0 + CD 10 t/ha	84-9-48-7
T_4	100-10-40-5-0	70-4-35-1
T5	86-25-16-0	75-26-17-0
T_6	0-0-0-0-0-0	0-0-0-0-0

Site: Golapganj, Sylhet

Treatment	T.Aus	T.Aman
	(N-P-K-S-Zn-B-CD)	
T_1	68-17-41-4.8-0	68-9-41-2.4-0
T_2	93-21-53-6.4-0	93-11-53-3.2-0
T_3	78-16-38-6.4-0+CD (5 t/ha)	93-11-53-3.2-0
T_4	40-8-20-4-1	40-4-20-2-0
T_5	54-12-22-0-0	54-12-22-0-0
T_6	0-0-0-0-0-0	0-0-0-0-0

Site: Moulvibajar, Sylhet

Treatment	T.Aus	T.Aman
	(N-P-K-S-Zn-B-CD)	
T_1	66-14-32-3.6-0	66-7-32-1.8-0
T_2	90-16-41-4.8-0	90-8-41-2.4-0
T_3	75-11-26-4.8-0+CD (5 t/ha)	90-8-41-2.4-0
T_4	40-8-20-4-1	40-4-20-2-0
T_5	64-10-17-0-0	64-10-17-0-0
T_6	0-0-0-0-0-0	0-0-0-0-0

Site: Kalaroa, Khulna

Treatment	Boro (N-P-K-S-Zn)	T.Aman (N-P-K-S-Zn)
T ₁	100-23-22-13-20	68-10-15-8
T_2	140-33-30-18-2.5	92-13-20-11
T_3	130-27-20-18-2.5+10 t/ha CD	92-13-20-11
T_4	100-20-35-10-1.5	70-6-20-4
T_5	138-30-37-0-2.7	135-30-37.5-0-5.4
T_6	0-0-0-0-0	0-0-0-0-0

Site:Dumuria, Khulna

Treatment	Sesame (N-P-K-S-Zn)	T.Aman (N-P-K-S-Zn)
T1	50-20-14-15-1	35-4-15-2
T_2	65-26-18-20-1.5	45-5-20-3
T_3	50-21-3-20-1.5 + CD 5 t/ha	45-5-20-3
T_4	50-20-14-15-1	35-4-15-2
T_5	0-0-0-0-0	0-0-0-0

Site: Laxmipur, Noakhali

Treatment Groundnut (N-P-K-S)		T.Aman (N-P-K-S)
T_1	20-30-10-0	60-12-14
T_2	30-40-15-0	80-15-23
T_3	18-35-10-0+ CD 5 t/ha	80-15-16
T_4	20-20-25-12	65-7-25-4
T ₅	6-24-0-0	36-6-0-0
T_6	0	0

Site:Atkapalia, Noakhali

Treatment	Groundnut (N-P-K-S)	T.Aman (N-P-K-S)
T_1	21-33-24-0-0	66-12-22-0-1
T_2	30-43-34-0-0	90-14-29-0-1.5
T_3	15-38-19-0-0 + CD 5 t/ha	90-14-29-0-1.5
T_4	20-20-25-12-1	65-7-25-4-0
T_5	6-24-0-0-0	38-16-0-0 + CD 1.25 t/ha
T_6	0-0-0-0-0	0-0-0-0

Site: Barind, Rajshahi

Tugates anta	Potato	T.Aman
Treatments	(N-P-K-S-Zn-B)	(N-P-K-S)
T_1	106-22-37-8-2.5-0.8	74-9-16-6
T_2	147-32-54-18-4-1.0	100-11-20-8
T_3	138-27-48-18-4-1.0 + Cd 10 t/ha	100-11-20-8
T_4	161-30-132-18-2.5-1.0	75-12-40-5
T ₅	207-70-210-18-2-1.0	62-13-16-8
T_6	0-0-0-0-0	0-0-0-0

Site: Paba, Rajshahi

Tugates anta	Potato	T.Aman
Treatments	(N-P-K-S-Zn-B)	(N-P-K-S)
T_1	88-34-48-0-0-0	62-0-10-0
T_2	124-45-66-0-0-0	85-0-15-0
T_3	94-22-30-0-0 + CD 10 t/ha	85-0-15-0
T_4	98-45-48-0	70-6-20-4
T5	170-255-225-21-6-4	62-25-15-8
T_6	0-0-0-0-0-0	0-0-0-0

Site: Natore, Rajshahi

Treatments	Groundnut	T.Aman
	(N-P-K-S-Zn-B)	(N-P-K-S)
T ₁	21-24-20-8-1.5-0	62-7-16-3
T_2	30-30-29-10-2.5-0	85-9-20-4
T_3	15-25-14-10-2.5 -0+ CD 5 t/ha	85-9-20-4
T_4	21-24-20-8-0-0	70-6-20-4
T5	6-17-21-2-0-0	97-47-32-0
T_6	0-0-0-0-0-0	0-0-0-0

Site: Syedpur, Rangpur

Treatment	Potato (N-P-K-S-Mg-Zn-B-CD)	Boro (N-P-K-S)	T.Aman (N-P-K-S)
T_1	95-17-98-12-10-2-1-0	95-7-51-8	65-5-36-5
T_2	135-25-140-17-15-3-1.5-0	135-10-71-11-	90-7-46-7
T ₃	105-15-110-17-15-3-1.5-10000	135-10-71-11	90-7-46-7
T_4	100-20-50-8-0-1-0-0	100-10-20-5	65-7-20-3
T ₅	110-48-160-20-0-4-1-7500	69-0-0-0	97-18-28-0
T_6	0-0-0-0-0-0-0-0	0-0-0-0	0-0-0-0

Site: Chandina, Comilla

Treatment	Potato	T.Aus	T.Aman
	(N-P-K-S-Zn)	(N-P-K-S)	(N-P-K-S)
T_1	80-11-50-113-4	51-10-55-8	51-10-55-8
T_2	113-20-101-15-5	72-12-60-12	72-12-60-12
T_3	88-12-75-15-5 (5t/ha CD)	44-10-40-12 (5t/ha)	44-10-40-12 (5t/ha)
T_4	95-20-56-8-3	64-14-40-8	64-14-40-8
T ₅	225-117-225	90-59-100	90-59-100
T_6	0-0-0-0	0-0-0-0	0-0-0-0

Site: Kushtia

Treatment	Onion (N-P-K-S-Zn-CD)	T.Aus (N-P-K-S)	T.Aman (N-P-K-S)
T ₁	80-60-0-2-0	55-15-7-3	55-15-7-3
T_2	80-60-0-2-0	75-18-10-5	75-18-10-5
T_3	70-55-0-0 -2-10t/ha	75-18-10-5	75-18-10-5
T_4	100-40-60-25-2-0	70-6-15-4	70-6-15-4
T ₅	109-22-74-17-0-0	52-25-31-4	52-25-31-4
T_6	0-0-0-0-0-0	0-0-0-0	0-0-0-0

Site: Jhalokati, Barisal

Treatment	T.Aus (N-P-K-Zn)	T.Aman (N-P-K-Zn)
T ₁	60-15-0-0.5	66-5-0-0
T_2	80-16-0-1	96-7.5-0-0
T3*	70-6-0-1	96-7.5-0-0
T_4	50-5-35-2	44-7.5-35-0
T ₅	40-8-0-0	40-8-0-0
T ₆	0-0-0-0	0-0-0-0

*2 t/ha CD were applied in T₃ treatment

Site: Bhola, Barisal

Treatment	Mungbean (N-P-K-S)	T.Aus (N-P-K-S)	T.Aman (N-P-K-S)
T_1	20-10-01	64-5-0-1.5	66-5-0-1.5
T_2	25-15-0-2	64-7.5-0-2	96-7.5-0-2
T ₃ *	5-5-0-2	94-7.5-0-2	96-7.5-0-2
T_4	12-8-8-6	44-7.5-0-5	46-7.5-0-5
T ₅	0-0-0-0	40-8-35-0	36-8-35-0
T ₆	0-0-0-0	0-0-0-0	0-0-0-0

*2 t/ha CD were applied in T₃ treatment

Site: Lebukhali, Patuakhali

Treatment	Chilli	T.Aman
	(N-P-K-S)	(N-P-K)
T_1	95-81-76	46-15-25
T_2	123-105-98	65-19-35
T_3	93-95-68 + CD 10 t/ha	65-19-35
T_4	65-40-50	30-3-15
T_5	60-25-0	60-0-0
T_6	0-0-0	0-0-0

Site: Munshiganj

Treatment	Potato (N-P-K-S)	Jute (N-P-K-S)
T1	90-8-35-10	35-0-10-0
T_2	128-11-50-15	50-0-15-0
T_3	118-6-40-15+ CD 10 t/ha	50-0-15-0
T_4	95-20-56-8	35-4-20-3
T ₅	400-150-400-0	60-0-0-0
T_6	0-0-0-0	0-0-0-0

Site: Manikganj

Treatment	Mustard (N-P-K-S-Zn-B-CD)	Boro (N-P-K-S-Zn-CD)
T_1	66-25-21-18-2-1	96-15-38-6
T_2	93-32-31-23-3-1	135-21-54-8
T_3	78-27-16-23-3-1 + CD 5 t/ha	135-21-54-8
T_4	60-15-10-10-0-0	100-15-35-6
T_5	105-24-45-5-0-0	104-27-28-25-0
T ₆	0-0-0-0	0-0-0-0

Site: Kaliakoir

Treatment	Mustard	Boro
Treatment	(N-P-K-S-Zn-B-CD)	(N-P-K-S-Zn-CD)
T_1	67-22-25-16-1-0.5	98-13-45-5-1
T_2	99-28-36-19-2-0.5	138-19-63-7-1.5
T_3	84-23-21-19-2-0.5 + CD 5 t/ha	138-19-63-7-1.5
T_4	60-15-10-10-0-0-0	100-15-35-6-1
T ₅	138-38-39-0-0-0	115-35-26-7-0
T_6	0-0-0-0	0-0-0-0

Results and Discussion

CP : Mustard-Boro-T.Aman Location : Melandah, Jamalpur (AEZ 9)

Year : 1999-2000 to 2001-02

Average of three years data revealed that higher grain yield of Mustard was obtained from T_2 followed by T_1 and T_3 . However, during 2000-01 grain yield was not differed significantly among the treatments except with control. Soil test based fertilizer dose for HYG (T_1) and fertilizer dose from FRG '97 produced almost similar yield. Similarly, in Boro rice grain yield was higher in T_2 and closely followed by T_1 and T_3 . During 2000-01 there was no significant difference in yield was found except control. But in 2001-02 the yield was only differed with Farmers' practice ant control treatment. In T.Aman rice, no significant difference in yield was found among the treatments except with Farmers' practice and control treatments. However, during 2000-01 and 2001-02 the yield was significantly higher in T_1 but in 1999-2000 treatment T_2 produced significantly higher yield. In straw/stover yield more or less similar trend was found.

On an average, cost and return analysis showed that the highest gross margin was obtained from IPNS (T_2) treatment closely followed by T_1 . But the highest MBCR was calculated from T_3 followed by T_1 . In IPNS treatment reduced the MBCR, due to additional cost of MOC. Based on three years of experimentation the present fertilizer recommendation FRG '97 was found superior in respect of yield and profit.

	Seed	/grain yield	(t/ha)	Seed	/grain yield	(t/ha)	Seed/grain yield (t/ha)			
Treat	2001-02				2000-01		1999-2000			
	Mustard	Boro	T.Aman	Mustard	Boro	T.Aman	Mustard	Boro	T.Aman	
T_1	0.82b	6.50a	5.45a	1.05a	6.48a	4.93a	0.71b	3.76c	3.94b	
T_2	1.04a	6.07a	4.97b	1.11a	6.04a	4.08b	1.06a	5.92a	4.33a	
T ₃	0.76b	6.06a	4.58b	0.99a	5.88a	4.40ab	0.75b	4.21b	3.78b	
T_4	0.75b	5.01b	3.62c	0.82a	5.80a	4.27b	0.57c	3.61c	3.51c	
T ₅	0.45c	2.13c	2.04d	0.43b	2.08b	3.45c	0.27d	1.52d	1.09d	

Table 1. Yield of Mustard, Boro and T.Aman as affected by fertilizer levels in the cropping
pattern Mustard-Boro-T.Aman at Melandah, Jamalpur during 1999-2000 to 2001-02

Table 1. Contd.

	Stover	/ Straw yiel	ld (t/ha)	Stover	/ Straw yie	ld (t/ha)	Stover/ Straw yield (t/ha) 1999-2000			
Treat		2001-02			2000-2001	l				
	Mustard	Boro	T.Aman	Mustard	Boro	T.Aman	Mustard	Boro	T.Aman	
T_1	2.31b	6.67a	5.83a	4.55a	6.80a	6.73a	1.79b	4.66bc	4.43c	
T_2	2.91a	5.84b	5.46a	4.68a	6.61ab	6.06b	2.07a	6.31a	5.26a	
T_3	2.26b	5.97b	5.69a	4.43a	5.29b	5.75b	1.79b	4.87b	4.71b	
T_4	2.21b	6.28ab	5.60a	3.41b	4.96b	5.90b	1.76b	3.74c	4.81b	
T_5	1.25c	2.55c	2.07b	1.29c	2.30c	4.84c	1.02c	1.29d	1.24d	

Figure in the column having similar letter(s) do not differ significantly

Table 2. Yield, cost and return analysis of Mustard -Boro-T.Aman cropping pattern as affected by fertilizer levels at Melandaha, Jamalpur during 1999-2000 to 2001-02

T	Gra	in yield (t	/ha)	Stover/	straw yiel	d (t/ha)	CD	TVC	GM	MDCD
Treat	Mustard	Boro	T.Aman	Mustard	Boro	T.Aman	GK	IVC	GM	MDCK
T_1	0.86	5.58	4.77	2.05	6.04	5.66	96175	9717	86458	5.87
T_2	1.07	6.01	4.46	2.49	6.25	5.59	100710	13686	87024	4.50
T ₃	0.83	5.38	4.25	2.02	5.38	5.38	89950	6819	83131	7.45
T_4	0.71	4.81	3.80	1.98	4.99	5.44	80722	10650	70072	3.90
T ₅	0.38	1.91	2.19	1.13	2.05	2.72	39107	0	39107	-

Output (kg/tk.): Mustard 15.00, T.Aman rice = 7.00, Boro = 7.00, Mustard straw = 1.00, Rice straw = 0.75

Inputs (kg/tk.): Urea = 5.60, TSP = 12.40, MP = 9.40, Gypsum = 4.00, Zinc sulphate = 25.00, Mustard oil cake = 6.00, Boric acid = 90.00

CP : Potato-Jute-T.Aman Location : Narikeli, Jamalpur (AEZ 9) Year : 2001-02

Crop yield

Tuber yield of Potato did not vary significantly among the treatments except with no fertilizer treatment. Effect of higher levels of fertilizers as well as organic manure on the yield of Potato was not evident. Almost similar result was observed in fibre yield of Jute and the yield is only differed with Farmers practice and control plots. In T.Aman rice significantly higher grain yield was recorded from STB fertilizer dose for HYG (T_2) and IPNS treatment (T_3). Fertilizer dose for MYG (STB & FRG '97) produced identical yield with Farmers practice. In all cases the lowest yield was obtained from no fertilizer (T_5). Almost similar trend was observed in stick yield of Jute. But in straw yield of T.Aman rice no significant difference was found among the different nutrient packages except with no fertilizer treatment.

From cost and return analysis showed that the highest gross margin was obtained from T_1 closely followed by T_3 but higher MBCR was recorded from treatment T_4 followed by T_1 . It is noted that MBCR was lowest in IPNS treatment due to the additional cost of MOC.

Treat.	Grain yield (t/ha)			Stover/	stick/ stra (t/ha)	w yield	GR	VC (Th/ha)	GM (Th/ha)	MBCR
	Potato	Jute	T.Aman	Potato	Jute	T.Aman	(1 K/na)	(1 k/na)	(1 k/na)	
T_1	31.0a	2.5a	4.2b	-	3.7a	4.4a	180400	9653	170747	7.25
T_2	29.0a	2.4a	4.5a	-	3.6a	4.4a	173600	11846	161754	5.34
T_3	32.0a	2.5a	4.5a	-	3.6a	4.5a	185475	17354	169121	4.33
T_4	28.0a	2.2a	4.2b	-	3.5ab	4.6a	165950	7069	158881	7.86
T_5	27.0a	2.0b	3.8b	-	3.3b	4.5a	157275	7891	149384	5.94
T_6	20.0b	1.1c	2.5c	-	2.3c	2.3b	110325	0	110325	-

Table 3. Yield, cost and return analysis of Potato-Jute-T.Aman cropping pattern as affected by different fertilizer packages at Narikeli, Jamalpur during 2001-2002

Output (kg/tk.): Potato Tk. 4.00, T.Aman rice = Tk. 7.00, Jute (fiber) =Tk. 7.00, Jute stick = Tk. 1.00, Rice straw = Tk. 0.75

Inputs (kg/tk.): Urea= Tk. 6.00, TSP = Tk. 14.00, MP =Tk. 10.00, Gypsum =Tk. 3.00, Zinc sulphate =Tk. 25.00, Mustard oil cake =Tk. 10.00

CP : Wheat-Jute-T.Aman Location : Sherpur, Jamalpur (AEZ 9) Year : 2001-02

Crop yield

Grain yield of Wheat did not vary significantly among the treatments except with FRG '97 (T_4) and no fertilizer treatment (T_6). However, STB fertilizer doses for HYG & MYG (T_2 & T_1) also produced identical yield with FRG '97. In Jute, the highest fibre yield was recorded from IPNS (T_3) which is also identical to T_2 and T_1 . Fertilizer doses for MYG (STB & FRG '97 produced similar yield along with farmers' practice (T_5). In T.Aman rice almost similar trend was found in grain yield. In all cases the lowest yield was obtained from no fertilizer (T_6). More or less the trend was similar in case of straw/stick yield of Wheat, T.Aman rice and Jute, respectively.

From Cost and return analysis it was found that the highest gross margin was calculated from STB fertilizer dose (T_1) closely followed by T_2 and T_5 . Regarding MBCR the highest value was obtained from T_4 (FRG '97). Due to higher fertilization cost the MBCR was lower in T_2 and T_3 .

Table 4.	Yield,	cost a	and return	analysis	of	Wheat-Jute-T.Aman	cropping	pattern	as	affected	by
	differe	ent fert	ilizer pack	ages at Sł	nerp	our, Jamalpur during 2	2001-02				

Treat.	Grain yield (t/ha)			Stover/	stick/ stra (t/ha)	w yield	GR	VC	GM (Tk/ha)	MBCR
	Wheat	Jute	T.Aman	Wheat	Jute	T.Aman	(1 k/na)	(1 k/na)	(1 k/na)	
T_1	2.37ab	1.79ab	4.39ab	3.87ab	4.42a	5.28a	78460	8378	70082	5.42
T_2	2.39ab	1.98a	4.47a	3.89ab	4.60a	5.53a	81299	12096	69203	3.99
T_3	2.53a	2.01a	4.31ab	4.21a	4.67a	5.39a	81623	13616	68007	3.57
T_4	2.05b	1.67b	4.05c	3.61b	4.47a	4.87b	71883	5459	66424	7.12
T_5	2.43a	1.75b	4.16bc	3.88ab	4.37a	4.96b	76547	8500	68047	5.12
T_6	0.83c	1.01c	1.81d	1.63c	1.67b	2.91c	33008	0	33008	-

Output (kg/Tk): Wheat Tk. 7.00, T.Aman rice = Tk. 7.00, Jute (fiber) =Tk. 6.25, Jute stick = Tk. 0.75, Rice straw = Tk. 0.75, Wheat straw = Tk. 0.50

Inputs (kg/Tk): Urea= Tk. 5.60, TSP = Tk. 12.40, MP =Tk. 9.40, Gypsum =Tk. 4.00, Zinc sulphate =Tk. 25.00, Mustard oil cake =Tk. 10.00

CP : Mustard-Boro-T.Aman Location: Muktagacha, Mymensingh (AEZ 9) Year : 2001-02

Average of three years data showed that seed yield of Mustard did not differ significantly among the different fertilizer packages except with T_1 and no fertilizer (T_6). However the higher yield was recorded from T_3 where IPNS based fertilizer was applied. During 1999-2000 and 2000-01 yield was drastically reduced due to late sowing of Mustard. In Boro rice, higher grain yield was recorded from T_3 , followed by T_4 , T_2 and T_5 . However, the trend was slightly varied over the years. The highest yield was obtained from IPNS (T_3) but it was identical to T_2 , T_4 and T_5 . Similarly in T.Aman rice, higher yield was obtained from T_3 but it was almost identical to T_2 and Farmers' practice. Regarding stover/straw yield almost similar trend was found. Initial nutrient status of the soil showed that the soil of the experimental plot was deficit in NPK but the response of crops to higher doses of nutrients was not apparent. The status of micronutrients like Zn and B was not known and not applied in the soil at all. That might be one of the reasons for low response of nutrients towards yield.

On an average, cost and return analysis showed that the highest gross margin was obtained from T_3 (IPNS) higher MBCR was found where IPNS based fertilizer dose was used. Considering the agroeconomic performance and long term soil fertility, IPNS based fertilizer dose could be suggested for the cropping pattern at Muktagacha, Mymensingh.

Table 5. Yield of Mustard, Boro and T.Aman as affected by fertilizer levels in the cropping
pattern Mustard-Boro-T.Aman at Muktagacha, Mymensingh during 1999-2000 to 2001-02

	Seed	l/grain yield	l (t/ha)	Seed	l/grain yield	(t/ha)	Seed/grain yield (t/ha)			
Treat		2001-02			2000-2001	-	1999-2000			
	Mustard	Boro	T.Aman	Mustard	Boro	T.Aman	Mustard	Boro	T.Aman	
T_1	0.673b	3.86c	2.40d	468.3b	4.51b	3.46c	397.0a	3.94c	3.84c	
T_2	0.980a	4.93b	2.79ab	543.3ab	5.36a	4.41a	460.0a	4.13bc	4.84a	
T_3	0.967a	5.32a	3.17a	601.7a	5.44a	4.52a	447.0a	4.63a	4.95a	
T_4	0.993a	5.23a	3.24a	530.0ab	5.23a	3.90b	462.0a	4.38ab	4.33b	
T_5	0.960a	5.20a	3.11a	501.7ab	4.49b	4.40a	415.0a	4.52a	4.93a	
T_6	0.393c	3.18	2.36b	246.2c	3.44c	2.73d	205.0b	3.34d	3.08d	

Table 5. Contd.

	Stover	Straw yie	ld (t/ha)	Stover	/ Straw yiel	ld (t/ha)	Stover/ Straw yield (t/ha)			
Treat		2001-02			2000-2001		1999-2000			
	Mustard	Boro	T.Aman	Mustard	Boro	T.Aman	Mustard	Boro	T.Aman	
T_1	1.11c	4.83c	4.36c	0.73ab	5.61c	4.12c	0.51b	4.94a	4.52b	
T_2	1.64ab	5.98b	4.70b	0.72b	6.18ab	5.01ab	0.59a	4.98a	5.53a	
T_3	1.72a	6.20ab	4.96ab	0.80a	6.34a	5.10a	0.59a	5.33a	5.63a	
T_4	1.74a	6.10b	5.00ab	0.73ab	5.93bc	4.76b	0.61a	5.03a	5.33a	
T_5	1.58b	6.36a	5.24a	0.77ab	5.69c	5.06a	0.55ab	5.40a	5.62a	
T_6	0.89d	4.17d	3.93d	0.46c	4.75d	3.24d	0.35c	3.82b	3.67c	

Figure in the column having similar letter(s) do not differ significantly

Treat	Gra	Grain yield (t/ha)			straw yiel	d (t/ha)	CD	VC	CM	MDCD
Treat	Mustard	Boro	T.Aman	Mustard	Boro	T.Aman	GK	ve	GM	MDCK
T1	0.512	4.10	3.23	0.783	5.12	4.33	65528	7559	57969	1.79
T_2	0.661	4.81	4.01	0.983	5.71	5.01	79208	11041	68165	2.51
T_3	0.672	5.13	4.21	1.037	5.96	5.23	83447	12705	70742	2.47
T_4	0.662	4.95	3.82	1.027	5.69	5.03	79082	8247	70835	3.77
T_5	0.625	4.74	4.15	0.967	5.82	5.31	79412	11413	48345	2.44
T_6	0.281	3.32	2.72	0.567	4.25	3.61	51992	0	51992	-

Table 6. Yield, cost and return analysis of Mustard -Boro-T.Aman cropping pattern as affected by fertilizer levels at Muktagacha, Mymensingh during 1999-2000 to 2001-02 (Avg.of 3 years)

Output: Mustard Tk. 15.00, T.Aman rice = Tk. 7.00, Boro =Tk. 7.00, Mustard straw = Tk. 0.50, Rice straw = Tk. 0.50 **Inputs:** Urea = Tk. 6.00, TSP = Tk. 14.00, MP =Tk. 10.00, Gypsum =Tk. 4.00, Cowdung =Tk. 0.50

СР	: Mustard-Boro-T.Aman
Location	: Gabtali, Bogra (AEZ 25)
Year	: 2001-02

Significantly higher seed yield of Mustard was recorded from T_2 . No considerable response of MOC applied in IPNS treatment was evident in the yield of Mustard. Similarly, in Boro and T.Aman rice the highest yield was recorded from the same treatment. Like Mustard no response of MOC was observed in grain yield of rice. Fertilizer doses for MYG (STB & FRG '97) produced similar yield in all the crops of the pattern. In stover yield of Mustard significantly higher yield was recorded from T_1 and T_3 and the trend was almost same in T.Aman rice. But in Boro rice no significant difference in straw yield was observed among the different treatments except with Farmers' practice and no fertilizer.

Cost and return analysis showed that highest gross return as well as gross margin was obtained from T_2 . Regarding MBCR fertilizer dose from FRG '97 gave the highest value closely followed by Farmers' practice. STB fertilizer doses for MYG and HYG also produced similar MBCR. Due to additional cost of MOC the MBCR was the lowest in IPNS treatment (T_3) and similarly, due to less fertilization cost in T_4 and T_5 gave higher MBCR.

Treat	Gra	in yield ((t/ha)	Stover/	straw yie	ld (t/ha)	GR	VC	GM	MDCD
Treat.	Mustard	Boro	T.Aman	Mustard	Boro	T.Aman	(Tk/ha)	(Tk/ha)	(Tk/ha)	MDCK
T_1	0.96 c	4.94 c	3.11 c	3.04 a	6.53 ab	6.09 bc	73244	10894	62350	3.85
T_2	1.09 a	5.93 a	3.96 a	2.65 b	7.05 a	6.51 a	87418	14783	72635	3.79
T_3	1.02 b	5.27 b	3.75 b	3.06 a	7.14 a	6.96 ab	80920	26648	54272	1.86
T_4	0.90 d	4.76 c	3.09 c	2.73 b	6.9 a	6.05 bc	71074	8402	62672	4.72
T_5	0.81 e	3.90 d	2.72 b	2.52 b	6.20 b	5.91 c	60908	6557	54351	4.50
T_6	0.36 f	1.83 e	1.72 e	0.62 c	3.18 c	2.96 b	31344	0	31344	-

Table 7. Yield, cost and return analysis of Mustard -Boro-T.Aman cropping pattern as affected by fertilizer levels at Gabtali, Bogra during 2001-02

Price:

Inputs (Tk./kg): Urea = 5.5, TSP = 14.5, MP= 9.5, Gypsum=. 3, Zinc Sulphate = 50,

Products (Tk./kg): T.Aman rice= 6.50, Boro rice = 6.50, Straw = 0.50, Mustard (2001-02) = 14.50

CP: Mustard-Boro-T.AmanLocation: Bagherpara, Jessore (AEZ 11)Year: 2000-01

Average of three years data showed that the highest seed yield of Mustard was recorded from Farmers' practice (T_5) but it did not vary markedly among the fertilizer packages except with no fertilizer treatment. The yield level of mustard was generally low due to late sowing of Mustard and

delayed harvest of T.Aman rice. Higher level of fertilizers as well as organic manure failed to produce any significant response towards mustard yield. The trend was more or less similar and the nutrient packages did not vary significantly except with no fertilizer. In Boro rice, higher yield was obtained from Farmers' practice (T_5) and FRG '97 (T_4). Except control other treatments produced almost similar yield. Yield data over the years showed that during 1999-2000 and 2000-01, significantly higher yield was obtained from T_5 and T_4 but in 2001-02 there was no variation among the different treatments except with T_1 and T_6 . In T.Aman rice almost similar result was observed. During 1999-2000 and 2001-02 significantly higher yield was recorded from Farmers' practice but in 2000-01 identical yield was found except with T_6 and T_1 . Regarding stover/straw yield more or less similar trend was observed. In farmers' practice the fertilizer dose was much higher and that contributed to the higher yield.

From cost and return analysis it was found that highest gross margin was recorded from T_4 (FRG '97) followed by T_5 (FP) but the MBCR was higher in T_2 and T_4 . The MBCR was lowest in farmer practice due to application of higher doses of fertilizer. Considering yield and return STB fertilizer dose for HYG could be suggested for the pattern at Jessore region.

Table 8. Yield of Mustard, Boro and T.Aman as affected by fertilizer levels in the cropping
pattern Mustard-Boro-T.Aman at Bagherpara, Jessore during 1999-2000 to 2001-02

	Seed	/grain yield	l (t/ha)	Seed/grain yield (t/ha)			Seed/grain yield (t/ha)			
Treat		1999-2000)	2000-2001			2001-02			
	Mustard	Boro	T.Aman	Mustard	Boro	T.Aman	Mustard	Boro	T.Aman	
T_1	0.367a	2.88d	3.27c	0.715a	4.96c	4.33b	0.660ab	4.50b	3.01b	
T_2	0.357a	3.46c	3.50c	0.887a	5.43b	4.57ab	0.790a	5.85a	2.91b	
T_3	0.322ab	3.58c	3.67bc	0.872a	5.47b	5.14ab	0.613ab	5.62a	3.03b	
T_4	0.393a	4.06b	3.99b	0.897a	5.97a	5.23a	0.617ab	5.59a	3.04b	
T_5	0.453a	4.92a	4.48a	0.987a	5.60ab	5.10ab	0.766a	5.65a	3.47a	
T_6	0.225b	2.34e	1.79d	0.420b	2.91d	2.39c	0.427b	2.64c	2.25c	

Table 8. Contd.

	Stover	/ Straw yie	ld (t/ha)	Stover	/ Straw yie	ld (t/ha)	Stover/	Stover/ Straw yield (t/ha)			
Treat		1999-2000)		2000-2001	l	2001-02				
	Mustard	Boro	T.Aman	Mustard	Boro	T.Aman	Mustard	Boro	T.Aman		
T_1	1.59ab	3.31b	3.77c	2.18b	5.11c	4.25a	1.31ab	4.31b	3.33a		
T_2	1.46ab	3.59b	4.52b	2.60ab	5.52abc	4.59a	1.31ab	5.20a	3.27		
T_3	1.19bc	3.76b	4.48b	2.63ab	5.69ab	4.52a	1.28ab	5.08a	3.51a		
T_4	1.46ab	4.29a	4.68ab	2.64ab	5.94a	4.75a	1.21ab	4.77ab	3.35a		
T_5	1.68a	4.82a	5.10a	2.92a	5.44bc	5.14a	1.59a	5.05a	3.61a		
T ₆	0.98c	2.27c	2.20d	1.49c	3.63d	2.24b	0.87b	2.76c	2.53b		

Figure in the column having similar letter(s) do not differ significantly

Table 9. Yield, cost and return analysis of Mustard-Boro-T.Aman cropping pattern as affected by fertilizer levels at Bagherpara, Jessore during 1999-02 (Average of 3 years)

Treat	Gra	in yield (t	/ha)	Stover/	straw yiel	d (t/ha)	GR	VC	GM (Tk/ha) 60744 71415 70626 74439 73604 42889 /kg :sg :sg :sg	MDCD
Treat	Mustard	Boro	T.Aman	Mustard	Boro	T.Aman	(Tk/ha)	(Tk/ha)	(Tk/ha)	MDCK
T_1	0.581	4.11	3.54	1.69	4.24	3.78	65037	4293	60744	5.15
T_2	0.678	4.91	3.66	1.79	4.77	4.13	77159	5744	71415	5.97
T_3	0.602	4.89	3.95	1.94	4.84	4.17	77348	6722	70626	5.13
T_4	0.636	5.21	4.09	1.77	5.00	4.26	81057	6618	74439	5.76
T_5	0.735	5.39	4.35	2.06	5.10	4.62	86401	12717	73604	3.42
T_6	0.357	2.63	2.14	1.11	2.89	2.32	42889	0	42889	-
Input	price:	Urea=Tk	. 6.00 /kg	Pro	duct price:	Musta	rd grain -	Tk. 15.50/	kg	
		TSP= Tk. 12.00/kg				Musta	rd straw-	Tk. 0.50/kg	g	
		MP =Tk. 8.50/kg				Rice g	rain	Tk. 7.00/kg	g	
	Gypsum= Tk. 3.00/kg					Rice st	raw	Tk. 0.75/kg	g	
		ZnSO ₄₌ T	^r k. 60.00/k	g						

СР	: Wheat-Jute-T.Aman
Location	: Kishoreganj (AEZ 9)
Year	: 1999-2000 to 2001-02

Average of 3 years data showed that higher grain yield of wheat was recorded from IPNS (T₃) and STB fertilizer dose for HYG (T₂) followed by T₁ and T₅. Yield was significantly higher during 2000-01 and 2001-02 but in 1999-2000 identical yield was produced among the different nutrient packages except with FRG '97 (T₄) and no fertilizer (T₆). STB fertilizer dose for MYG and Farmers' practice produced identical and higher yield over FRG '97. In Jute the highest fibre yield was obtained from T₃ followed by T₂ and T₁. STB fertilizer dose for HYG and MYG also gave similar yield. However, during 2000-01 identical yield was recorded in T₃, T₂ and T₁ but in 1999-2000 and 2001-02 significantly higher yield was found in T₃. In T.Aman rice the trend was similar to wheat. Higher yield was recorded from T₃ and T₂ followed by T₁ and T₅. However, the trend was little differed over the years. In 2001-02, significantly higher yield was found in T₃ followed by T₂ but in 2000-01 and 1999-2000 yield did not vary significantly among the treatments except with T₄ and no fertilizer (1999-2000). Regarding straw and stick yield almost similar trend was observed in Wheat, T.Aman rice and Jute. Initial soil nutrient status showed that the soil was deficit in N and P and that's why a positive response oh higher level of nutrients was evident.

The cost and return analysis of crops grown in Wheat-Jute-T.Aman cropping pattern showed that the highest gross return and gross margin was obtained from treatment T_3 (INM) followed by T2 and T1. But the highest MBCR (5.66) was obtained from treatment T_4 (FRG '97) due to use of less amount of fertilizers followed by Farmers' practice. Additional cost for organic manure in T3 reduces the MBCR. Considering the yield and soil fertility for sustaining crop production IPNS practice may be recommended.

Treat	Grain	/fibre yield	(t/ha)	Grain	/fibre yield	(t/ha)	Grain/fibre yield (t/ha)			
Treat		2001-02			2000-2001		1999-2000			
	Wheat	Jute	T.Aman	Wheat	Jute	T.Aman	Wheat	Jute	T.Aman	
T_1	1.59b	2.82b	2.47b	1.32b	2.55ab	3.90a	1.45ab	1.55b	3.98a	
T_2	1.86a	2.83b	2.95a	1.53a	2.71ab	4.05a	1.57ab	1.49bc	4.11a	
T_3	1.66a	3.42a	3.13a	1.59a	2.93a	4.43a	1.76a	1.83a	4.06a	
T_4	1.46bc	2.49b	2.55b	1.28b	2.29bc	3.88a	1.36bc	1.31c	3.56b	
T 5	1.42bc	2.47b	2.46b	1.29b	2.44b	3.90a	1.60ab	1.32c	3.73ab	
T_6	1.20c	2.06c	1.69c	1.00c	1.85c	3.04b	1.03c	0.99d	3.01c	
CV (%)										

Table 10. Yield of Wheat, Jute and T.Aman as affected by fertilizer levels in the cropping pattern Wheat-Jute-T.Aman at Kishoreganj during 1999-2000 to 2001-02

Table 10. Contd.

	Straw/Stick yield (Tk/ha)										
Treat		2001-02			2000-2001		1999-2000				
	Wheat	Jute	T.Aman	Wheat	Jute	T.Aman	Wheat	Jute	T.Aman		
T_1	2.12b	3.44b	4.14b	1.53b	3.25ab	4.82ab	1.96a	3.11b	3.50ab		
T_2	2.41a	3.36bc	4.95a	1.76a	3.22ab	5.34a	2.14a	3.10b	3.65a		
T_3	2.36a	4.10a	5.34a	1.72ab	3.64a	4.90ab	2.30a	3.49a	3.49ab		
T_4	1.96bc	2.85d	4.01b	1.62b	2.85bc	4.56bc	2.11a	2.83bc	3.31b		
T5	1.81cd	2.92cd	3.94b	1.48bc	3.15ab	4.69bc	2.13a	2.65cd	3.40b		
T_6	1.72d	2.58d	2.84c	1.25c	2.41c	4.27c	1.25b	2.38d	3.02c		
CV(%)											

Figure in the column having similar letter(s) do not differ significantly

Treat	Gra	in yield (t	/ha)	Stover/ s	straw yie	ld (t/ha)	GR	VC	GM	MDCD
	Wheat	Jute	T.Aman	Wheat	Jute	T.Aman	(Tk/ha)	(Tk/ha)	(Tk/ha)	MDUK
T_1	1.45	2.31	3.45	1.87	3.27	4.15	71090	7776	63314	1.50
T_2	1.65	2.34	3.70	2.10	3.23	4.65	72830	10557	62273	1.01
T_3	1.67	2.73	3.87	2.13	3.74	4.58	78240	12401	65839	1.14
T_4	1.37	2.03	3.33	1.90	2.84	3.96	63845	3913	59932	2.12
T_5	1.44	2.08	3.36	1.81	2.91	4.01	67205	5637	61568	1.76
T_6	1.08	1.63	2.58	1.41	2.46	3.38	51655	0	51655	-

Table 11. Yield, cost and return analysis of Wheat-Jute-T.Aman cropping pattern as affected by fertilizer levels at Kishoreganj during 1999-2000 to 2001-02 (Avg. of 3 years)

CP: Wheat-Jute-T.AmanLocation: Goyeshpur, Pabna (AEZ 11)Year: 2000-01

During 1999-2000 and 2001-02 grain yield did not vary significantly among the treatments except with control treatment but in 2000-01 treatment T_2 and T_3 produced significantly higher yield over other treatments. Average of three years data showed that higher grain yield in wheat was recorded from IPNS (T₃) and STB fertilizer dose for HYG (T₂). Fertilizer doses for MYG (STB & FRG '97) produced similar yield. Initial soil nutrient status data showed that the soil is deficit in NP and S and therefore, a positive effect of higher levels of nutrients was apparent on wheat. However, the trend was slightly varied over the years. Similarly, in Jute the highest fibre yield was obtained from IPNS treatment and the other treatments did not differ appreciably except with control. The trend was more or less same over the year. In T.Aman rice, the higher grain yield was also recorded from T₃ and T₂ closely followed by Farmers practice (T₅). Fertilizer doses for T₁ (MYG) and T₄ produced similar yield. The trend did not vary markedly over the years. Regarding straw/stick yield of Wheat, Jute and T.Aman rice more or less similar trend was observed.

From cost and return analysis, it was found that the highest gross margin was obtained from IPNS (T_3) treatment followed by T_2 . Similarly, the highest MBCR was calculated from T_3 treatment. Based on three years of study IPNS based fertilizer dose could be recommended for the cropping pattern in terms of yield and economic return as well as for sustainable soil fertility.

Treat T ₁ T ₂	Grain	/fibre yield	(t/ha)	Grain	/fibre yield	(t/ha)	Grain	/fibre yield	(t/ha)	
Treat		1999-2000			2000-2001		2001-02			
	Wheat	Jute	T.Aman	Wheat	Jute	T.Aman	Wheat	Jute	T.Aman	
T_1	3.18a	1.51ab	3.50b	2.60b	1.50b	4.04a	2.11a	2.67ab	4.03ab	
T_2	3.29a	1.12ab	4.34a	3.19a	1.65ab	4.46a	2.05a	2.75ab	4.33ab	
T_3	3.21a	1.66a	4.53a	3.20a	1.77a	4.59a	2.22a	3.03a	4.69a	
T_4	3.10a	1.50ab	3.54b	2.60b	1.77a	4.23a	2.06a	2.60ab	4.00ab	
T5	2.89a	1.27ab	4.24a	2.42b	1.57ab	4.14a	2.08a	2.71ab	4.04ab	
T ₆	1.61b	0.99b	1.93c	1.09c	0.98c	2.39b	1.06b	2.15b	3.57b	
CV (%)	7.7	2.2	9.5	6.3	8.6	14.2	9.60	11.7	11.2	

Table 12. Yield of Wheat, Jute and T.Aman as affected by fertilizer levels in the cropping pattern Wheat-Jute-T.Aman at Goyeshpur, Pabna during 1999-2000 to 2001-02

				Straw/	Stick yield	(Tk/ha)			
Treat	1999-2000				2000-2001		2001-02		
	Wheat	Jute	T.Aman	Wheat	Jute	T.Aman	Wheat	Jute	T.Aman
T_1	3.94a	3.87a	4.20b	3.63b	2.67a	5.78a	4.09a	4.82c	5.59ab
T_2	3.84a	3.67a	5.50a	4.26a	2.99a	5.71a	5.00a	6.23ab	5.49ab
T_3	3.45a	3.90a	5.90a	4.43a	3.10a	5.99a	4.91a	7.05a	5.58ab
T_4	3.96a	3.67a	4.20b	3.48b	2.98a	6.12a	4.27a	5.94bc	4.73ab
T_5	4.10a	2.92ab	5.40a	3.14c	2.96a	5.85a	4.08a	5.42bc	6.30a
T ₆	1.99b	2.51b	2.40c	1.60d	1.82b	4.24b	1.99b	4.80c	4.05b
CV (%)	13.6	15.4	9.4	6.5	11.1	11.2	15.5	9.9	15.6

Table 12. Contd.

Figure in the column having similar letter(s) do not differ significantly

Table 13. Yield, cost and return analysis of Wheat-Jute-T.Aman cropping pattern as affected by fertilizer levels at Goyeshpur, Pabna during 2000-01

Treat	Gra	ain yield (t	/ha)	Stover/ straw yield (t/ha)			GR	VC	GM	MDCD
Treat	Wheat	Jute	T.Aman	Wheat	Jute	T.Aman	(Tk/ha)	(Tk/ha)	(Tk/ha)	MDCK
T_1	2.63	1.89	3.98	3.89	3.79	5.19	99782	7382	92400	3.67
T_2	2.84	1.84	4.48	4.37	4.30	5.57	106318	8829	97489	3.65
T_3	2.88	2.15	4.60	4.26	4.68	5.82	113776	8881	104895	4.46
T_4	2.59	1.96	3.92	3.90	4.20	5.02	101429	7227	94202	4.00
T_5	2.46	1.85	4.14	3.77	3.77	5.85	98252	8578	89674	2.84
T_6	1.25	1.37	2.63	1.88	3.04	3.56	65280	0	65280	-

CP : Boro-T.Aman Location : Kendua, Kishoreganj (AEZ 9) Year : 2000-01

Yield data over the years showed that yield of Boro rice did not vary significantly among the treatments except with control, Farmers' practice (2000) and T_1 (2001). After three years of experimentation it was observed from the average data that higher grain yield in Boro rice was recorded from T_3 and T_2 followed by T_4 and T_5 . Similarly in T.Aman rice the highest yield was recorded from T_3 in 2000 but followed by T_2 in 2002 & 1999. Yield data over the years showed that T_3 produced significantly higher yield during 2000 over other treatments but in 2001 and 2002 it was also identical to T_2 . A positive response of cowdung was apparent towards the yield of the crops. Regarding straw yield more or less similar trend was observed in both the crops.

Cost and return analysis of different nutrient management packages in Boro- T.Aman rice cropping pattern showed higher gross margin in T_3 closely followed by T_5 . But MBCR was higher in T_5 followed by T_4 . However, yield and gross return was higher in T_3 and T_2 but due to higher fertilization cost the MBCR was less compared with other treatments. Farmers' practice is very close to recommended amount of NPKS and therefore, yield is quite satisfactory. Considering yield and return present fertilizer recommendation (FRG '97) was found superior over other fertilizer packages.

	20	000	20	001	2	002	Mean o	of 3 years
Treatment	Boro	T.Aman	Boro	T.Aman	Boro	T.Aman	Boro	T.Aman
				Grain yi	eld (t/ha)			
T1	5.06ab	3.78b	4.33b	4.10b	4.44a	3.55b	4.61	3.88
T_2	5.41a	3.74b	5.16a	4.20ab	4.68a	4.03ab	5.08	3.99
T ₃	5.34a	4.16a	5.21a	4.38a	4.88a	4.28a	5.14	4.27
T_4	4.99ab	3.77b	4.94ab	4.04b	4.64a	3.81b	4.86	3.93
T ₅	4.79b	3.74b	5.13a	4.01b	4.64a	3.48b	4.85	3.74
T_6	3.12c	2.98c	3.58c	3.15c	2.52b	2.03c	3.07	2.72
CV (%)								
· · · ·			Stra	aw Yield (t/h	a)			
T ₁	3.97a	4.51a	4.55b	4.64a	5.12a	4.62a	4.55	4.59
T_2	4.25a	4.81a	5.33a	4.64a	5.30a	5.37a	4.96	4.94
T ₃	4.10a	4.45a	5.70a	4.66a	5.22a	5.62a	5.01	4.91
T_4	4.08a	4.65a	5.77a	4.58a	5.40a	5.45a	5.08	4.89
T_5	4.00a	4.82a	5.48a	4.57a	5.52a	5.13a	5.00	4.84
T_6	3.31b	3.91b	4.52b	3.73b	3.96b	4.16b	3.93	3.93
CV (%)								

Table 14. Effect of different nutrient management packages on the yield of crops in Boro-T.Aman cropping patterns at Kendua, Kishoreganj during 1999-2000 to 2001-02

Table 15. Yield, cost and return analysis of Boro -T.Aman rice cropping pattern as affected by fertilizer levels at Kendua, Kishoreganj during 2000-2002 (average of 3 years)

	Grain yi	eld (t/ha)	Straw yield (t/ha)		Gross	Variable	Gross	MBCR
Treatment	Boro	T.Aman	Boro	Boro T.Aman		cost	margin	(over
					(11/11a)	(1K/IId)	(1K/11a)	control)
T_1	4.61	3.88	4.55	4.59	71913	6416	65497	3.24
T_2	5.08	3.99	4.96	4.94	77859	8883	68976	3.01
T ₃	5.14	4.27	5.01	4.91	79487	8304	71183	3.42
T_4	4.86	3.93	5.08	4.89	75233	5312	69920	4.54
T_5	4.85	3.74	5.00	4.84	75121	4999	70122	4.80
T_6	3.07	2.72	3.93	3.93	51110	0	51110	-

Location : Phulpur, Mymensingh (AEZ 9)

Year : 2000-01

Phulpur

During 2001 and 2002 significantly higher grain yield of Boro rice was obtained from T_3 and T_2 but in 2000 there was no significant difference in yield was found among the different nutrient packages except with no fertilizer. Average of three years data showed that the highest grain yield of Boro rice was recorded from STB fertilizer dose (T_2) closely followed by IPNS based fertilizer dose (T_3) and FRG '97 (T_4). However, the trend was slightly varied over the years. In T.Aman rice, almost similar result was found where the higher grain yield was recorded from the same treatment. However, the yield did not vary markedly among the nutrient packages. The lowest grain yield was obtained from T_6 where no fertilizer was applied.

From cost and return analysis it was found that, the highest gross margin was obtained from T2 followed by T_4 . Similarly, the MBCR was also higher in T_4 and T_2 . In IPNS treatment it was the lowest due to higher fertilization cost for cowdung. Therefore, after three years of experimentation STB fertilizer dose was found superior in terms of yield, profit as well as long term soil fertility of the soil.

	20	000	20)01	2	002	Mean o	f 3 years
Treatment	Boro	T.Aman	Boro	T.Aman	Boro	T.Aman	Boro	T.Aman
				Grain yi	eld (t/ha)			
T_1	4.43ab	4.03b	5.19b	4.14d	4.26d	3.80b	4.62	4.32
T_2	4.92a	4.50 a	5.43a	4.72a	5.21a	4.17a	5.19	4.46
T_3	4.14ab	4.54a	5.44a	4.52b	5.13a	4.15a	4.90	4.40
T_4	4.85a	4.33ba	5.16b	4.29c	4.78b	3.88b	4.93	4.17
T ₅	4.77a	4.08b	4.60c	4.16d	4.58c	3.81b	4.65	4.02
T_6	3.67b	3.08c	3.24d	3.24e	3.08e	2.88c	3.33	3.07
CV (%)								
			Stra	w Yield (t/h	a)			
T ₁	5.22a	5.33a	5.97bc	5.13d	5.57b	4.47c		
T_2	5.25a	5.57a	6.17ab	5.79a	6.12a	5.03a		
T ₃	5.27a	5.59a	6.25a	5.66ab	5.97a	5.05a		
T_4	5.27a	5.43a	5.87c	5.51bc	5.75b	4.78b		
T5	5.23a	5.30a	5.36d	5.36c	5.30c	4.01b		
T_6	4.64b	4.12b	4.20e	4.50e	4.52d	3.93d		
CV (%)								

Table 16. Effect of different nutrient management packages on the yield of crops in Boro-T.Aman cropping patterns at Phulpur, Mymensingh during 1999-2000 to 2001-02 (av. of 3 years)

Table 17. Yield, cost and return analysis of Boro-T.Aman rice cropping pattern as affected by fertilizer levels at Phulpur, Mymensingh during 1999-2000 to 2001-02(av. of 3 years)

	Grain yi	eld (t/ha)	Straw yield (t/ha)		Gross	Variable	Gross	MBCR
Treatment	Boro	TAmon	n Boro T.Aman return (Tk/ha) cost (Tk/ha) margin (Tk/ha) 5.59 4.98 67579 5860 61719 5.85 5.44 75451 7866 67586	T Aman	return	cost	margin	(over
	DOIO	1.Aman		(Tk/ha)	control)			
T_1	4.62	4.32	5.59	4.98	67579	5860	61719	2.99
T_2	5.19	4.46	5.85	5.44	75451	7866	67586	3.26
T_3	4.90	4.40	5.83	5.43	73021	10131	62890	2.21
T_4	4.93	4.17	5.63	5.24	71176	6453	64720	3.30
T5	4.65	4.02	5.30	4.89	67793	6979	60814	2.51
T ₆	3.33	3.07	4.45	4.18	50573	0	50573	-

* Variable Cost = Fertilizer Cost only

Netrakona

During the year 2000, significantly higher grain yield was recorded from T_2 over other treatments but in 2001 and 2002 yield was identical to T_3 . Response of higher levels of nutrients was apparent towards the yield of Boro rice. Average of three years data revealed that grain yield of Boro rice did not vary appreciably among the nutrient packages except with control. However, higher yield was obtained from T_2 and T_3 . In T.Aman rice, more or less similar result was observed in grain yield. Grain yield did not differ significantly among the nutrient packages except with control during the year 2000 and 2002. But in 2001, STB fertilizer dose for HYG and IPNS based fertilizer dose produced significantly higher grain yield.

From cost and return analysis, it was found that the highest gross return and margin was obtained from T_2 but the higher MBCR was calculated from T_4 followed by T_1 . Cost of over fertilization in T_3 gave the lowest MBCR. Considering yield and return present fertilizer recommendation (FRG '97) and STB fertilizer dose for MYG could be suggested for the cropping pattern at Netrakona.

	20	00	20	01	2002		
Treatment	Boro	T.Aman	Boro	T.Aman	Boro	T.Aman	
			Grain yie	eld (t/ha)			
T_1	3.98b	4.18a	4.86ab	3.47b	4.68b	3.01a	
T_2	4.57a	4.44a	5.15a	3.96a	5.18a	3.23a	
T_3	4.12b	4.45a	5.12a	3.97a	5.08a	3.33a	
T_4	3.97b	4.33a	4.53b	3.45b	4.68b	3.15a	
T 5	3.87b	4.31a	4.67ab	2.98c	4.53c	3.05a	
T_6	2.88c	2.88b	3.23c	2.52d	2.03d	2.13b	
CV (%)							
			Straw Yield (t/ha	ı)			
T_1	5.13b	5.22a	5.57ab	3.55b	6.12b	4.02a	
T_2	5.93a	5.44a	6.03a	4.04a	6.72a	4.16a	
T_3	5.28b	5.50a	6.04a	4.07a	6.57a	4.43a	
T_4	5.12b	5.30a	5.20b	3.53b	6.12b	4.03a	
T ₅	4.95b	5.27a	5.39b	3.03c	5.87c	4.03a	
T_6	3.58c	3.67b	3.64c	2.58d	2.63d	2.85b	
CV (%)							

Table 18. Effect of different nutrient management packages on the yield of crops in Boro-T.Aman cropping patterns at Netrakona during 1999-2000 to 2001-02

Table 19. Yield, cost and return analysis of Boro -T.Aman rice cropping pattern as affected by fertilizer levels at Netrakona during 1999-2000 to 2001-02 (Avg. of 3 years)

	Grain yi	eld (t/ha)	Straw yield (t/ha)		Gross	Variable	Gross	MBCR
Treatment	Boro	T.Aman	Boro	T.Aman	return	cost	margin	(over
т					(Tk/ha)	(Tk/ha)	(Tk/ha)	control)
T_1	4.51	3.55	5.65	4.26	64133	7312	56821	3.29
T_2	4.97	3.88	6.27	4.55	69229	9912	59317	2.93
T_3	4.77	3.92	5.96	4.65	68099	12086	56009	
T_4	4.39	3.64	5.48	4.28	62958	6529	56429	3.61
T ₅	4.36	3.45	5.48	4.11	61149	8416	52729	2.69
T_6	2.71	2.51	3.28	3.03	40777	0	40777	-

* Variable Cost = Fertilizer Cost only

CP : Boro-T.Aman Location : Satkaniya, Chittagong (AEZ 23) Year : 2000-2002

After three years of experimentation it was observed from the average data that the highest grain yield in Boro rice was recorded from T_3 closely followed by T_2 . Fertilizer doses for MYG (STB & FRG '97) produced similar yield. Initial soil nutrient status showed that the soil is deficit with NPKS and therefore, effect of higher levels of nutrients on the grain yield was observed. The trend over the year is almost same. Similarly in T.Aman rice the highest yield was recorded from T_3 followed by T_2 . Treatment T_1 , T_4 and T_5 gave almost similar yield. Almost similar trend was observed over the years. Regarding Straw yield more or less similar trend was observed in both the crops.

Cost and return analysis of different nutrient management packages in Boro- T.Aman rice cropping pattern showed that the highest gross margin was obtained from T_2 followed by T_3 and T_4 . But the highest MBCR was calculated from T_4 . Except IPNS (T_3) other treatments gave more or less similar MBCR. However, yield and gross return was higher in T_3 but due to higher fertilization cost the MBCR was the lowest. Considering yield and return present fertilizer recommendation (FRG '97) was found superior over other fertilizer packages.

	20	000	20	001	20	002				
Treatment	Boro	T.Aman	Boro	T.Aman	Boro	T.Aman				
	Grain yield (t/ha)									
T_1	5.39	4.15	4.71 4.25		4.96	4.39				
T_2	5.60	4.91	5.74	4.95	5.56	5.22				
T_3	5.74	4.72	5.67	5.24	5.76	5.36				
T_4	5.08	4.33	4.90	4.49	5.17	4.74				
T5	4.91	4.03	4.32	4.31	4.60	4.31				
T_6	2.94	2.39	3.00	2.62	3.52	3.18				
CV (%)										
			Straw Yield (t/h	a)						
T_1	5.49	4.76	5.24	4.62	5.32	4.64				
T_2	6.20	5.34	6.04	5.89	6.44	5.64				
T_3	6.20	5.28	5.64	5.60	6.18	5.82				
T_4	5.28	5.22	5.54	4.92	5.50	5.26				
T_5	5.57	4.96	5.24	4.80	5.56	4.88				
T ₆	3.42	3.56	3.58	3.63	3.90	3.60				
CV (%)										

Table 20. Effect of different nutrient management packages on the yield of crops in Boro-T.Aman cropping patterns at Satkaniya, Chittagong during 2000-02

Table 21. Yield, cost and return analysis of Boro -T.Aman rice cropping pattern as affected by fertilizer levels at Satkaniya, Chittagong during 2000-02 (Avg. of 3 years)

	Grain yi	eld (t/ha)	Straw yield (t/ha)		Gross	Variable	Gross	MBCR
Treatment T ₁	Boro	T.Aman	Boro	T.Aman	return (Tk/ha)	cost (Tk/ha)	margin (Tk/ha)	(over control)
T ₁	5.02	4.26	5.35	4.67	66784	6876	59908	3.46
T_2	5.63	5.03	6.23	5.62	77347	9447	67900	3.63
T ₃	5.72	5.11	6.01	5.57	78351	13690	64661	2.58
T_4	5.05	4.52	5.44	5.13	69404	5110	64294	5.16
T_5	4.61	4.22	5.46	4.88	64331	5686	58645	3.75
T_6	3.15	2.73	3.63	3.60	43011	0	43011	-

Location : Joypurhat, Bogra (AEZ 25) Year : 2001-02

Grain yield of Boro rice was significantly higher in T_2 and T_3 followed by T_1 and T_4 . STB fertilizer dose as well as IPNS produced the highest yield. Fertilizer doses for MYG (STB & FRG '97) also gave identical yield. In T.Aman rice the trend was same. Regarding straw yield, however, yield was much higher and it might be due to presence of excess moisture. But the trend was more or less similar to grain yield.

Cost and return analysis showed that higher gross return as well as gross margin was recorded from T_3 followed by T_2 . MBCR in all cases above 3 and varied closely. However, the highest MBCR was found in T_3 (IPNS) treatment.

Grain yi	eld (t/ha)	Straw yield (t/ha)		Gross	Variable	Gross	MBCR
Boro	TAmon	Boro	T Amon	return	cost	margin	(over
Bolo	I.Alliali	BOID	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	control)			
4.39b	4.14b	8.76b	8.86b	62493	7152	55521	4.00
5.24a	4.67a	9.98a	9.21b	72091	9888	62203	3.86
5.26a	4.78a	10.01a	9.80a	73119	9542	63577	4.10
4.35b	4.17b	8.98b	9.15b	62632	7445	55187	3.86
3.83c	3.67c	8.24c	8.04c	53962	6014	47948	3.33
2.72d	2.13d	6.15d	5.37d	33920	0	33920	-
	Grain yi Boro 4.39b 5.24a 5.26a 4.35b 3.83c 2.72d	Grain yield (t/ha) Boro T.Aman 4.39b 4.14b 5.24a 4.67a 5.26a 4.78a 4.35b 4.17b 3.83c 3.67c 2.72d 2.13d	Grain yield (t/ha) Straw yi Boro T.Aman Boro 4.39b 4.14b 8.76b 5.24a 4.67a 9.98a 5.26a 4.78a 10.01a 4.35b 4.17b 8.98b 3.83c 3.67c 8.24c 2.72d 2.13d 6.15d	Grain yield (t/ha) Straw yield (t/ha) Boro T.Aman Boro T.Aman 4.39b 4.14b 8.76b 8.86b 5.24a 4.67a 9.98a 9.21b 5.26a 4.78a 10.01a 9.80a 4.35b 4.17b 8.98b 9.15b 3.83c 3.67c 8.24c 8.04c 2.72d 2.13d 6.15d 5.37d	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 22. Yield, cost and return analysis of Boro -T.Aman rice cropping pattern as affected by fertilizer levels at Joypurhat, Bogra during 2001-02

* Variable Cost = Fertilizer Cost only

Price:

Inputs: (Tk./kg)= Urea = Tk. 5.5, TSP =Tk. 14.5, MP= Tk. 9.5, Gypsum= Tk. 3, Zinc Sulphate = Tk. 50 Products Tk./kg)= T.Aman rice Tk. 6.50, Boro rice = Tk. 6.50, Straw = Tk. 0.50

Location : Feni, Noakhali (AEZ 18) Year : 2001-02

Grain yield of Boro rice was significantly higher in T_1 followed by T_2 and T_3 . STB fertilizer dose for MYG produced higher yield over STB fertilizer dose for HYG and IPNS treatment but the reasons are not clear. Treatment T_2 and T_3 gave identical yield. Initial soil nutrient status showed that soil is very deficit in nutrient contents but response of higher levels of nutrients was not observed. But in T.Aman rice significantly higher grain yield was obtained from T_2 and T_3 . Response of higher levels of nutrients was evident in T.Aman rice. Similar result was found in case of straw yield of Boro and T.Aman rice. STB fertilizer dose for MYG produced significantly higher yield over FRG '97 in all the crops.

Cost and return analysis showed that the highest gross margin was recorded from T_1 followed by T_3 . MBCR was also higher in T_1 but due to less fertilization cost it was highest in T4. STB fertilizer dose for MYG was found superior in terms of yield and return.

	Grain yi	eld (t/ha)	Straw yield (t/ha)		Gross	Variable	Gross	MBCR
Treatment	Boro	T.Aman	Boro	T.Aman	return	cost	margin	(over
					(1 k/na)	(1 k/na)	(1 k/na)	control)
T_1	5.46a	4.94b	5.84a	5.14b	94470	10352	84118	4.53
T_2	4.81b	5.31a	5.22b	5.51a	91995	14137	77858	3.14
T_3	4.94b	5.53a	5.42b	5.73a	95250	15755	79495	3.02
T_4	4.37c	4.14c	4.69c	4.33c	77355	5947	71333	4.99
T5	3.52d	3.69d	3.87d	3.89d	65715	6639	59076	2.72
T_6	2.74e	2.47e	3.04e	2.66e	47625	0	47625	-

Table 23. Yield, cost and return analysis of Boro -T.Aman rice cropping pattern as affected by fertilizer levels at Feni, Noakhali during 2001-02

* Variable Cost = Fertilizer Cost only

Price of inputs: Urea @ Tk.6.00/Kg, TSP @ Tk.15.00/Kg, MP @ Tk.10.00/Kg, Gypsum @ Tk.5.00/Kg, Zinc sulphate @ Tk.40.00/Kg

Price of outputs: Grain @ Tk. 7.50 /Kg, Straw @ Tk.1.50/Kg

Location : Ishan Gopalpur, Faridpur (AEZ 12) Year : 2001-02

The grain yield of Boro rice varied significantly due to different nutrient packages. Significantly thr highest grain yield was obtained in IPNS (T₃) No significant difference was observed among the treatments T_2 , T_4 and farmers' practice (T₅). However, Fertilizer dose for MYG from FRG '97 gave significantly higher yield over STB fertilizer dose for MYG. In T.Aman rice, similar result was observed. Almost similar trend was found in straw yield for both the crops. In IPNS treatment where cowdung was applied along with inorganic fertilizers might have played a vital role for uptake of different nutrients which contributed to achieve a comparatively higher yield.

From cost and return analysis of revealed that the highest gross return and margin as well as MBCR were also obtained from treatment T_3 . Therefore, IPNS based fertilizer dose was found superior in terms of yield, economic return as well as soil fertility.

				-	-			
	Grain yi	eld (t/ha)	Straw yi	eld (t/ha)	Gross	Variable	Gross	MBCR
Treatment	Doro	T Amon	Doro	T Amon	return	cost	margin	(over
	BOID	I.Alliali	Bolo	I.Aman	(Tk/ha)	(Tk/ha)	(Tk/ha)	control)
T_1	5.48c	5.48c	6.95c	6.95c	63220	43910	19310	1.92
T_2	5.74bc	5.74bc	7.27bc	7.27bc	66355	45211	21144	1.97
T_3	6.56a	6.56a	7.81a	7.81a	72555	47887	24668	2.01
T_4	6.00b	6.00b	7.54ab	7.54ab	64845	44465	20380	1.96
T5	5.89bc	5.89bc	7.42ab	7.42ab	63265	48012	15253	1.49
T_6	2.84d	2.84d	3.67d	3.67d	36265	29902	6363	

Table 24. Yield, cost and return analysis of Boro -T.Aman rice cropping pattern as affected by fertilizer levels at Ishan Gopalpur, Faridpur during 2001-02

Variable Cost = Fertilizer Cost only

Price of fertilizer: Urea = 6.50 Tk./kg, TSP = 11.00 Tk./kg, MP = 9.00 Tk./kg, Gypsum = 3.00 Tk./kg, Cowdung = 0.40 Tk./kg

Price of product: Boro rice = 7.00 Tk./kg, T.Aman rice = 6.50 Tk./kg, Rice straw = 0.50 Tk./kg

Location : Norail, Jessore (AEZ 11) Year : 1999-2000 to 2001-02

Average of three years data showed that grain yield of Boro rice did not varied among the fertilizer treatments except with STB fertilizer dose for MYG (T₁) and no fertilizer treatment (T₆). STB fertilizer dose for HYG and IPNS treatment failed to show yield increase over FRG '97 based fertilizer dose (T₄) and Farmers' practice (T₅). Almost similar results were found over the years. However, the initial nutrient status of the soil indicated the nutrient deficiency of the soil but it was not reflected on the yield of Boro rice. In T.Aman rice, higher grain yield was obtained from T₄ and T₅. IPNS as well as STB fertilizer doses did not considerable effect over other fertilizer doses except with control. The trend was varied slightly over the years. During 1999-2000 significantly higher yield was obtained from T₅ and T₁ but in 2000-01 and 2001-02 yield was did not differ among the treatments except with no fertilizer. In case of straw yield more or less similar trend was observed for both the rices.

From cost and return analysis it was found that the highest gross margin was calculated from T_3 followed by T_4 . But the highest MBCR was calculated from T_4 followed by T_2 . However the Farmers' practice gave the highest yield and gross return but due to high fertilization cost MBCR was the lowest. Therefore, three years of experimentation it revealed that response of organic manure was not evident on the yield of crops. The present BARC fertilizer recommendation dose (T_4) was found optimum for Boro-T.Aman cropping pattern at Norail, Jessore in respect of Yield, cost and return analysis.

	1999	-2000	2000	-2001	2001	-2002
Tractoriant	Boro	T.Aman	Boro	T.Aman	Boro	T.Aman
Treatment			Grain yi	eld (t/ha)		
T_1	4.93b	4.64ab	4.03a	3.28b	4.27b	4.18c
T_2	5.47a	4.44c	4.52a	4.22a	5.03a	4.51bc
T_3	5.63a	4.55bc	4.90a	4.47a	5.06a	4.94ab
T_4	5.46a	4.61abc	4.60a	4.41a	5.12a	5.17a
T5	5.74a	4.75a	4.98a	4.54a	5.17a	4.95ab
T ₆	2.25c	1.61d	2.70b	1.85c	2.68c	2.30d
			Straw Yield (t/h	a)		
T_1	4.12a	5.65a	3.74c	4.08c	4.58b	4.70ab
T_2	4.57a	5.40a	4.23b	5.17b	4.96ab	4.62b
T_3	4.58a	5.78a	4.74a	5.46a	5.36a	5.18ab
T_4	4.57a	5.62a	4.13b	5.44ab	5.07ab	5.32a
T_5	4.51a	5.73a	4.79a	5.52a	5.32a	5.24ab
T ₆	2.59b	4.08b	1.90d	1.88d	2.52c	2.88c

Table 25. Effect of different nutrient management packages on the yield of crops in Boro-T.Aman cropping patterns at Norail, Jessore during 1999-2000 to 2001-2002

Table 26. Yield, cost and return analysis of Boro -T.Aman rice cropping pattern as affected by fertilizer levels at Norail, Jessore during 1999-2000 to 2001-02 (Avg. of 3 years)

	Grain yield (t/ha)		Straw yi	Straw yield (t/ha)		Variable	Gross	MBCR
Treatment	Boro	T Aman	Boro	T Aman	return	cost	margin	(over
	Bere	1.7 minun	Bere	1.7 minun	(Tk/ha)	(Tk/ha)	(Tk/ha)	control)
T_1	4.41	4.03	4.15	4.14	60669	3865	56804	6.94
T_2	5.01	4.39	4.59	5.06	70948	5256	65692	7.06
T ₃	5.18	4.65	4.89	5.47	73473	6416	67057	6.18
T_4	5.06	4.73	4.59	5.46	71870	4828	67042	7.88
T ₅	5.29	4.75	4.87	5.49	74747	13546	61201	3.02
T_6	2.54	1.92	2.34	2.95	33813	0	33813	-

* Variable Cost = Fertilizer Cost only

Inputs and outputs:

Price (Tk./ka): Boro rice= 7.00, .T.Aman=7.00, Straw=0.75, Urea= 6.00, TSP=12.00, MP= 8.50, Gypsum= 3.00, Zinc Sulphate= 60.00

Location : Sujanagar, Pabna (AEZ 11) Year : 2001-02

Significantly higher grain yield in Boro rice was recorded from T_3 and T_2 followed by T_1 , T_4 and T_5 . As the soil was deficit with nutrients and therefore effect of higher doses of nutrients was evident in Boro rice. However fertilizer doses for MYG (STB & FRG '97) along with Farmers' practice produced identical yield. But in T.Aman rice grain yield did not vary significantly among the different nutrient packages except with T_4 and T_6 . More or less the trend was same in case of straw yield. From cost and return analysis it was found that the highest gross margin as well as MBCR was obtained from IPNS (T_3) treatment followed by STB fertilizer dose for HYG (T_2) & T_4 .

	Grain yield (t/ha)		Straw y	Straw yield (t/ha)		Variable	Gross	MBCR
Treatment	Boro	T.Aman	Boro	T.Aman	return (Tk/ha)	cost (Tk/ha)	margin (Tk/ha)	(over control)
T ₁	4.23b	4.29ab	-	6.78ab	69720	6503	63217	2.74
T_2	5.51a	4.39ab	-	6.32b	80340	7874	72466	3.44
T_3	5.46a	4.72a	-	6.92a	83875	8651	75224	3.46
T_4	4.45b	4.03b	-	6.13b	69335	5422	64013	3.43
T5	4.22b	4.29ab	-	6.71ab	69605	7401	62204	2.27
T ₆	2.22c	3.32c	-	5.13c	45415	0	45415	-

Table 27. Yield, cost and return analysis of Boro -T.Aman rice cropping pattern as affected by fertilizer levels at Sujanagar, Pabna during 2001-02

* Variable Cost = Fertilizer Cost only

Location : Kolaroa, Khulna (AEZ 13) Year : 2001-02

Kolaroa

Significantly higher grain yield of Boro rice was recorded from T_3 where STB fertilizer dose along with organic manure was applied but identical to STB fertilizer dose for HYG (T_2). However, the other treatments produced identical yield and only differed with no fertilizer treatment. In T.Aman rice the highest grain yield was recorded from Farmers' practice (T_5) which was also identical to T_2 and T_3 . Traditionally the farmers' of that are applied a high dose of inorganic fertilizers. Regarding straw yield no significant difference was observed in Boro rice among the treatments except with no fertilizer. But in T.Aman rice significantly higher straw yield was obtained from T_5 and the other treatments did not vary significantly except with no fertilizer.

Cost and return analysis showed that the highest gross margin was obtained from T_3 followed by T_2 and T_5 . But the MBCR was highest in T_4 . In other cases the MBCR is less than T_3 . Due to additional cost for organic manure increased the fertilization cost and reduced MBCR in T_3 .

Table 28	. Yield,	cost	and	return	analysis	of	Boro	-T.Aman	rice	cropping	pattern	as	affected	by
	fertiliz	er leve	els at	t Kolar	oa MLT s	site,	, Khul	na during	2001-	-02				

	Grain yi	eld (t/ha)	Straw yi	eld (t/ha)	Gross	Variable	Gross	MBCR
Treatment	Boro	T.Aman	Boro	T.Aman	return (Tk/ha)	cost (Tk/ha)	margin (Tk/ha)	(over control)
T ₁	5.37b	3.90cd	5.50a	4.50bc	69,890	6,992	62,898	2.69
T_2	5.87ab	4.70ab	6.12a	5.20b	79,650	9,791	69,859	2.91
T_3	6.37a	4.90ab	6.52a	5.15b	84,725	13,667	71,058	2.46
T_4	5.37b	4.30bc	6.12a	5.20b	73,365	6,764	66,891	3.29
T5	5.75b	5.10a	6.25a	6.10a	82,125	12,675	69,450	2.45
T_6	3.37c	3.37d	3.75b	4.12c	51,115	0	51,115	-

• Variable Cost = Fertilizer Cost only

Price (Tk/kg)= Urea = 6.00, TSP= 14.00, MP= 10.00, Gypsum= 4.00, ZnSO₄= 80.00, Cow dung=0.50, Rice grain= 7.00, Rice straw= 0.50

Location :Dumuria, Khulna (AEZ 13)

```
Year : 2001-02
```

CP : Sesame - T.Aman

Higher seed yield of Sesame was recorded from T_2 but statistically at par to T_3 . Fertilizer doses for MYG (STB & FRG '97) also produced identical yield. The lowest yield was recorded from Farmers' practice (T_5). Absolute control treatment was not included in this treatment. In T.Aman rice significantly higher grain yield was recorded from STB fertilizer dose for HYG (T_2). Other treatments did not vary significantly except with Farmers' practice. Regarding straw yield almost similar trend was observed.

Cost and return analysis showed that the highest gross margin was obtained from T_2 . Similarly, MBCR was highest in the same treatment.

	Grain y	ield (t/ha)	Straw y	ield (t/ha)	Gross	Variable	Gross	MBCR
Treatment	Sasama	TAmon	Sasama	TAmon	return	cost	margin	(over
	Sesame	I.Aman	Sesame	I.Alliali	(Tk/ha)	(Tk/ha)	(Tk/ha)	control)
T1	1112b	4.15b	3250b	5.34b	48,314	4,262	44,052	1.53
T_2	1239a	4.46a	3612a	6.05a	52,725	5,577	47,148	1.96
T_3	1218a	4.22b	3675a	6.23a	50,946	7,229	43,717	1.26
T_4	1113b	4.03b	3200b	5.31b	47,421	4,262	43,159	1.33
T_5	956c	3.65c	2525c	4.45c	41,772		41,772	

Table 29. Yield, cost and return analysis of Sesame-T.Aman rice cropping pattern as affected by fertilizer levels at Dumuria MLT site, Khulna during 2001-02

Variable Cost = Fertilizer Cost only

Price (Tk/kg): Urea= 6.00, Gypsum= 4.00, TSP= 14.00, Cowdung= 0.50, MP= 10.00, Sesame= 12.00, ZnSO₄= 80.00, Sesame straw= 1.00, Rice grain= 7.00, Rice straw= 0.50

CP : Groundnut-T.Aman (AEZ 18)

Location : Atkapalia, Noakhali

Year : 2001-02

Nut yield of Ground nut did not vary significantly among the different nutrient packages except with no fertilizer. Effect of IPNS as well as higher levels of nutrients on the yield of Ground nut was not evident. Yield was identical even with Farmers' practice also. But in T.Aman rice significantly higher grain yield was recorded from IPNS (T₃) and FRG '97 (T₄) treatments. Other treatments produced more or less similar yield except in control plot. Almost same trend was observed regarding stover and straw yield of Ground nut and T.Aman rice, respectively.

Cost and return analysis showed that higher gross return as well as gross margin was obtained from T_4 . MBCR was also highest in the same treatment. Present fertilizer recommendation (FRG '97) was found superior in terms of yield and return.

	Nut/Grain yield (t/ha)		Stover/S	Straw	Gross	Variable	Gross	MBCR
Treatment			yield(t/ha)		return	cost	margin	(Over
	Groundnut	T.Aman	Groundnut	T.Aman	(Tk/ha)	Tk/ha	(Tk/ha)	control)
T ₁	2.53a	3.57bc	3.41ab	3.80b	69378	5403	63975	2.58
T_2	2.70a	3.64b	2.88bc	3.99b	72510	7083	65427	2.41
T_3	2.43a	4.33a	3.17ab	4.76a	74478	8732	65746	2.18
T_4	2.40a	4.41a	3.40ab	4.43a	74355	4621	69734	4.08
T 5	2.25ab	3.31bc	3.59a	4.00b	63473	4043	59430	1.98
T ₆	1.81b	3.20c	2.45c	3.70b	55463	0	55463	-

Table 30. Effect of different nutrient packages on agro-economics performance of Groundnut-
T.Aman cropping pattern at Atkapalia, Noakhali during 2001-02

 Price of inputs:
 Urea @ Tk.6.00/Kg, TSP @ Tk.14.00/Kg, MP @ Tk.10.00/Kg, Gypsum @ Tk.5.00/Kg, Zinc sulphate @ Tk.50.00/Kg

 Price of outputs:
 Groundnut @ Tk. 15.00/Kg, Stover@ Tk.0.25/Kg, Grain @ Tk. 7.50/Kg, Straw @ Tk.1.00/Kg

СР	: Groundnut-T.Aman (AEZ 18)
Location	: Laxmipur, Noakhali
Year	: 2001-02

Nut yield of Ground varied significantly among the different nutrient packages and the highest yield was recorded from T_3 . Between the two fertilizer doses for MYG, significantly higher yield was obtained from STB fertilizer dose (T_1) over FRG '97 (T_4). In T.Aman rice higher grain yield was

recorded from IPNS (T_3) closely followed by STB fertilizer dose for HYG (T_2) . More or less similar trend was observed regarding stover and straw yield of Ground nut and T.Aman rice, respectively.

Cost and return analysis showed that higher gross return as well as gross margin was obtained from T_3 followed by T_2 . But MBCR was highest in T_1 due to less fertilization cost compared to T_3 and T_2 .

	Nut/Grain 1			Straw	Gross	Variable	Gross	MBCR
Treatment	Nut/Grain yield (t/la)		yield(t/ha)		return	cost	margin	(Over
	Groundnut	T.Aman	Groundnut	T.Aman	(Tk/ha)	Tk/ha	(Tk/ha)	control)
T_1	2.23c	4.81b	2.61c	5.72c	76044	4856	71188	7.10
T_2	2.34b	5.11a	3.12b	6.27b	80638	6483	74150	6.03
T ₃	2.58a	5.22a	3.27a	6.48a	85248	8115	77133	5.39
T_4	1.86d	4.56c	2.66c	4.93d	68156	4804	63352	5.54
T5	1.40e	3.93d	2.19d	4.17e	55716	2427	52989	5.19
T ₆	1.02f	2.99e	1.21e	3.09f	41537	0	41537	-

Table 31. Effect of different nutrient packages on agro-economics performance of Groundnut-T.Aman cropping pattern at Laxmipur, Noakhali during 2001-02

Price of inputs: Urea @ Tk.6.50/Kg, TSP @ Tk.14.00/Kg, MP @ Tk.10.00/Kg, Gypsum @ Tk.5.00/Kg, Zinc sulphate @ Tk.60.00/Kg

Price of outputs: Groundnut @ Tk. 14.00/Kg, Stover@ Tk.0.25/Kg, Grain @ Tk. 8.00/Kg, Straw @ Tk.1.00/Kg

СР	: Groundnut-T.Aman (AEZ 11)
Location	: Natore, Rajshahi
X 7	3001 03

Nut yield of Groundnut varied significantly among the different nutrient packages and higher nut yield was recorded from T_4 followed by T_1 . It was observed that STB fertilizer dose for HYG as well as IPNS treatment failed to produce higher yield over fertilizer doses for MYG (STB & FRG '97). In T.Aman rice grain yield did not vary significantly among the different nutrient packages except with Farmers practice and no fertilizer treatment. However farmers usually apply a high dose of NPK in T.Aman rice even higher than recommended rate but yield was lower compared with recommended fertilizer dose. Initial soil nutrient status showed that the soil is deficit with S and Zn but farmers' did not apply any S and Zn fertilizer which might be responsible for lower yield. Stover yield of Groundnut did not vary significantly among the treatments except with Farmers' practice and control. Similarly straw yield of T.Aman rice did not differ significantly except with control treatment.

Cost and return analysis showed that higher gross return and gross margin as well as was MBCR was obtained from but slightly higher MBCR from treatment T_1 than T_4 . Considering yield and return STB fertilizer dose for MYG as well as fertilizer dose from FRG '97 could be suggested for the cropping pattern at Rajshahi.

					-		-	
	Nut/Grain 1	riald (t/ha)	Stover/S	Straw	Gross	Variable	Gross	MBCR
Treatment	Nut/Ofain y	field (t/lia)	yield(t	/ha)	return	cost	margin	(Over
	Groundnut	T.Aman	Groundnut	T.Aman	(Tk./ha)	Tk./ha	(Tk./ha)	control)
T1	2.02ab	4.68a	7.6a	4.97a	70555	3945	66610	8.37
T_2	1.91b	4.67a	7.6a	4.90a	68629	5184	63445	6.00
T_3	1.76bc	4.50a	7.9a	4.85a	64950	4336	60614	6.32
T_4	2.15a	4.50a	7.7a	4.70a	71137	4049	67088	8.30
T_5	1.59c	3.83b	6.9b	4.37a	57017	5091	51926	3.83
T_6	1.24d	2.16c	5.8c	2.25b	37520	0	37520	-

Table 32. Effect of different nutrient packages on agro-economics performance of Groundnut-
T.Aman cropping pattern at Natore, Rajshahi during 2001-02

CP: Potato-T.AmanLocation: Barind, Rajshahi (AEZ 26)Year: 2001 - 2002

Tuber yield varied significantly among different treatments. Significantly highest tuber yield (23.09 t/ha) was produced by farmers' practice (T_5) followed by T_4 and T_3 . Soil test based fertilizer dose for MYG and HYG failed to show better performance over other treatments. However, the soil of Barind has very low nutrient status and organic matter content is also very low but application of cowdung @ 10 t/ha did not have any positive effect on tuber yield. Farmers generally apply a high dose of NPK in Potato which is much higher than the recommended dose.

In T.Aman rice significantly higher yield was recorded from T_2 and T_3 . A considerable residual effect of cowdung applied in Potato was apparent in grain yield of T.Aman rice. Treatment T1, T4 and T5 produced identical yield. More or less similar trend was observed in stover/straw yield of Potato and T.Aman rice. Yield of crops varied mainly due to difference in N fertilizer doses. Treatment comprising higher dose of N gave higher yield.

Cost and return analysis results showed that the highest gross return as well as gross margin was recorded from T_4 followed by T_3 . The highest MBCR was calculated from IPNS treatment (T_3) followed by T_4 . Fertilization cost was much higher in Farmers' practice (T_5) due to over fertilization in Potato. Therefore, MBCR was lowest in T_5 .

Table	33.	Yield,	cost	and	return	analysis	of	Potato-T.A	Aman	rice	cropping	pattern	as	affected	by
		fertilize	er leve	els at	Chabb	ishnagar,	Ba	irind, Rajsh	nahi du	ıring	2001-02				

	Grain yi	eld (t/ha)	Straw yi	eld (t/ha)	Gross	Variable	Gross	MBCR
Treatment	Dotato	TAmon	Dotato	TAmon	return	cost	margin	(over
	Fotato	I.Aman	Fotato	Potato 1.Aman (Tk/ha) (Tk/ha) 2.96d 4.20b 85940 11620	(Tk/ha)	control)		
T_1	13.75d	3.82b	2.96d	4.20b	85940	11620	74320	2.15
T_2	18.31c	4.60a	3.50c	5.37a	109894	15526	94368	3.15
T ₃	19.12c	4.49a	3.83b	5.24a	113150	15491	97659	3.37
T_4	20.69b	3.98b	4.03ab	4.04b	114660	15981	97679	3.16
T ₅	23.09a	3.81b	4.25a	3.92b	112950	21390	91560	2.43
T_6	9.71e	2.72c	1.69e	3.05c	60930	0	60930	-

* Variable Cost = Fertilizer Cost only

Price Tk./kg) = Urea =6.00, TSP= 13.00, MP= 9.00, Gypsum= 4.00, Boric acid= 110.00, ZnSO₄= 30.0, Cowdung= 0.05, Rice grain= 7.00, Rice straw= 1.00, Tuber= 4.00

СР	: Potato-T.Aman
Location	: Paba, Rajshahi (AEZ 11)
Year	: 2001 - 2002

Tuber yield of Potato did not vary significantly among the different nutrient packages except with no fertilizer treatment. Response of higher levels of nutrients as well as organic manure was not observed. Traditionally the farmers use a very high dose of NPK in Potato but yield was identical to other treatments. In T.Aman rice similar trend was observed. Grain yield did not vary significantly except with control.

Cost and return analysis results showed that the highest gross return as well as gross margin was recorded from T_4 but MBCR was slightly higher in T_1 and T_4 . Due to over fertilization cost the MBCR was the lowest in Farmers' practice (T_5). Fertilizer dose for MYG (STB & FRG '97) could be suggested for the cropping pattern at Rajshahi in terms of yield and economic return.

	Grain yi	eld (t/ha)	Straw yield (t/ha)		Gross	Variable	Gross	MBCR
Treatment	Dotato	T Amon	Dotato	T Amon	return	cost	margin	(over
	Totato	1.Aman	T Otato	to 1.Aman (Tk/ha) (Tk/ha) (Tk/ha) Da 3.56b 148335 3857 144478	control)			
T_1	24.2a	3.40a	26.9a	3.56b	148335	3857	144478	16.9
T_2	26.0a	3.96a	29.2a	4.19a	161912	5521	156391	13.9
T_3	22.6a	4.02a	25.8a	4.24a	145361	5175	140186	11.6
T_4	26.4a	3.95a	29.7a	4.16a	163824	5216	158608	15.0
T_5	24.6a	3.71a	28.6a	4.08a	153053	17411	147837	3.9
T_6	12.5b	2.80b	18.8b	2.96c	85084	0	85084	-

Table 34. Yield, cost and return analysis of Potato-T.Aman rice cropping pattern as affected by fertilizer levels at Paba, Rajshahi during 2001-02

* Variable Cost = Fertilizer Cost only

CP : Potato-Boro-T.Aman rice Location : Syedpur, Rangpur (AEZ 3) Year : 2001-02

Potato

Significantly highest tuber yield was recorded from farmers' practice (T₅). In farmers practice, they used a higher dose of fertilizers along with micronutrients (Zn and B) and organic manure in Potato which might be contributed to higher yield. Two MYG fertilizer doses (STB & FRG '97) also produced identical yield. But in Boro and T.Aman rice significantly higher grain yield was recorded from STB fertilizer dose for HYG (T₂) and IPNS treatment (T₃). Fertilizer doses for MYG (STB & FRG '97) and Farmers' practice produced identical yield. Straw yield of Boro rice did not vary significantly among the treatments except with T₄ (FRG '97) and T₆ (control). But in T.Aman rice higher and identical straw yield was recorded from T₂, T₃ and T₁. In all the cases the control treatment gave the lowest grain and straw yield in both the rice crops.

Cost and return analysis showed that higher gross return as well as gross margin was calculated from T_2 and T_3 followed by Farmers' practice (T_5). But MBCR was the highest in T_4 (FRG '97) due to less fertilization cost. Similarly, due to higher fertilization cost MBCR was less in T_3 and T_5 .

Table 35. Yield, cost and return analysis of Potato-Boro-T.Aman cropping pattern as affected by fertilizer levels at Syedpur FSRD site, Rangpur during 2001-02

Treet	Gra	in yield (t	/ha)	Stover	:/ straw yi	eld (t/ha)	CD	VC	CM	MDCD
Treat	Potato	Boro	T.Aman	Potato	Boro	T.Aman	GK	vC	GM	MBCK
T_1	22.84c	4.36b	4.21b	-	5.90ab	5.78ab	142920	10940	131980	6.65
T_2	25.63b	4.88a	4.95a	-	6.22a	6.31a	161795	15566	146229	5.89
T_3	26.08b	4.91a	5.07a	-	6.12ab	6.20a	164240	18886	145354	4.98
T_4	22.33c	4.19b	4.11b	-	5.33b	5.42b	138765	8510	130255	8.06
T_5	28.67a	4.10b	4.18b	-	5.75ab	5.55b	157900	17372	140528	5.05
T_6	10.72d	2.09c	2.25c	-	3.48c	3.08c	70160	0	70160	-

Means followed by the same letter(s) in a column are not significantly different at 5% level by DMRT.

CP : Potato-T.Aus-T.Aman Location : Chandina, Comilla (AEZ 19) Year : 2000-01

Average of three years study reveal that the highest tuber yield was recorded from Farmers practice (T_5) which is closely followed by STB fertilizer dose for HYG (T_2) . IPNS based fertilizer dose (T_3) did show better performance over T_2 and T_5 but produced higher yield over T_1 and T_4 . Fertilizer doses for MYG $(T_1 \text{ and } T_4)$ also gave similar yield. The lowest yield was recorded from no fertilizer (T_6)

treatment. The trend over the years are almost same and higher yield was obtained from T_5 followed by T_3 in 1999-2000 and 2000-01 but T_5 , T_2 and T_1 in 2001-02.

The grain yield of T.Aus rice did not vary markedly among the treatments except with control treatment. However, the data over the years varies slightly and it was found that during 1999-2000 and 2000-01 identical and higher yield was obtained from T_2 , T_3 and T_5 but in 2001-02 yield was did not vary among the treatments except with control. Similarly, In T.Aman rice, grain yield did not vary among the treatments except with T_1 and T_6 . Almost similar trend was found over the years and during 2001-02 yield was varied only with control treatment.

From cost and return analysis it was found that the highest gross margin was obtained from T_2 followed by T_3 . Similarly MBCR was also higher in the same treatment. Fertilizer doses for MYG (T_1 and T_4) gave similar value. Farmers' traditionally apply a very high dose of fertilizers in Potato and yield was quiet high. But due to higher fertilization cost gross margin was less and MBCR was the lowest. Based on three years of experimentation STB fertilizer dose for HYG (T_2) as well as IPNS (T_3) treatment was found superior in terms of yield, economic performance and sustainable soil fertility.

Table 36. Yield of crops in Potato-T.Aus-T.Aman cropping pattern as affected by fertilizer levels at Chandina, Comilla during 1999-2000 to 2001-02

	Viald	of 1st year	(t/ha)	Viald	of 2nd year	r (t/ha)	Vield of 3rd year (t/ha)			
Treatment	1 leiu	of 1st year	(l/lla)	1 leiu	JI ZIIU year	(1/11 <i>a</i>)	Tielu of Stu year (tha)			
Treatment	Potato	T.Aus	T.Aman	Potato	T.Aus	T.Aman	Potato	T.Aus	T.Aman	
T_1	15.96bc	4.5b	3.4b	15.46c	4.80bc	3.43bc	12.25bc	4.05a	4.46a	
T_2	17.52ab	5.15ab	3.8ab	18.23ab	5.00ab	3.83b	19.30a	4.25a	4.93a	
T_3	16.84b	5.57a	3.9a	15.92bc	5.10a	4.32a	16.50ab	4.18a	4.90a	
T_4	16.2bc	4.88b	3.5b	15.92bc	4.93b	4.05a	12.50bc	4.04a	4.69a	
T_5	18.79a	5.45a	4.0a	20.88a	5.09ab	4.12a	20.00a	4.35a	4.30a	
T_6	6.1d	3.5c	1.9c	6.23d	3.52d	3.18c	7.13c	2.91b	2.97b	

Table 37. Yield, cost and return analysis of Potato-T.Aus-T.Aman cropping pattern as affected by fertilizer levels at Chandina, Comilla during 1999-2000 to 2001-02 (Avg. of 3 year)

Treat	(Brain yield (t/ha	a)	CD	VC	CM	MDCD
Treat	Potato	T.Aus	T.Aman	GK	ve	GM	MDCK
T_1	14.56	4.45	3.76	357125	33994	323131	4.29
T_2	18.35	4.80	4.19	412850	39162	373688	5.14
T_3	16.42	4.95	4.37	399510	34887	364623	5.39
T_4	14.87	4.62	4.08	369800	33641	336159	4.70
T_5	19.89	4.96	4.14	430620	82548	348072	2.65
T ₆	6.49	3.31	2.68	211405	0	211405	-

* Variable Cost = Fertilizer cost only.

Price (Tk./ka): Potato=3.50, T.Aus rice= 7.00, T.Aman= 7.00, Rice straw= 1.00, Urea = 6.00, TSP=12.00, MP = 9.00, Gypsum= 4.00, Cowdung= 0.50, Zn= 100.00,

CP : Onion-T.Aus-T.Aman Location : Kushtia (AEZ 11) Year : 1999-2000 to 2001-02

Application of fertilizers significantly increased the bulb yield of onion. Average of three years data showed that the highest bulb yield was recorded from IPNS based fertilizer dose (T₃) followed by STB fertilizer dose for HYG (T₂). Effect of higher levels of fertilizer and organic manure was evident in Onion. Fertilizer dose from FRG '97 (T₄) and Farmers practice produced similar yield and higher than STB fertilizer dose for MYG. The soil was deficit in N and P and the status of P was very low. Effect of P on the yield of Onion was apparent. In T.Aus rice, grain yield did not vary appreciably among the treatments except with control. However the higher yield was recorded from IPNS treatment. In T.Aman rice almost similar trend was found. Grain yield differed mainly with T_1 and T_6

treatment and other treatments produced more or less similar yield. In case of straw yield almost similar trend was observed. The trend of product and by product yield was similar over the years.

The highest gross margin and return as well as MBCR was found in IPNS (T_3) followed by Farmers' practice. Among the fertilizer packages treatment T_1 where STB fertilizer dose for MYG was applied produced lowest gross margin and MBCR. Based on three years of experimentation IPNS based fertilizer dose could be recommended for higher yield, income as well as for long term soil fertility.

 cropping pattern at Kushtia during 1999-2000 to 2001-02

 Bulb/Grain yield (t/ha)
 Bulb/Grain yield (t/ha)
 Bulb/Grain yield (t/ha)

 Treat
 1999-2000
 2000-2001
 2001-02

 Onion
 T.Aus
 T.Aman
 Onion
 T.Aman

Table 38. Yield of crops as affected by fertilizer levels in the cropping pattern Onion-T.Aus -T.Aman

Treat		1999-2000			2000-2001			2001-02	
	Onion	T.Aus	T.Aman	Onion	T.Aus	T.Aman	Onion	T.Aus	T.Aman
T_1	8.87	3.16	3.69	9.26	3.75	3.52	10.3	3.25	4.20
T_2	11.16	3.43	4.28	10.97	3.90	3.87	11.59	3.35	4.83
T_3	11.12	3.55	4.58	12.99	4.00	3.99	13.52	4.29	4.83
T_4	9.52	3.20	4.24	11.48	3.98	3.85	11.21	4.00	4.91
T5	9.87	3.25	4.17	10.87	3.91	3.74	11.61	3.33	4.59
T_6	8.03	2.60	3.06	8.42	3.22	3.35	9.31	2.91	3.11

CV (%)

Table 38. Contd.

	Straw yield (t/ha)												
Treat		1999-2000			2000-2001		2001-02						
	Onion	T.Aus	T.Aman	Onion	T.Aus	T.Aman	Onion	T.Aus	T.Aman				
T_1	-	3.93a	5.85a	-	3.96a	4.50a	-	3.21cd	4.45a				
T_2	-	4.40a	6.15a	-	4.12a	4.58a	-	3.44bc	4.60a				
T_3	-	4.11a	6.45a	-	4.42a	4.88a	-	3.87a	4.80a				
T_4	-	4.03a	6.01a	-	4.42a	4.49a	-	3.79a	4.55a				
T_5	-	4.12a	6.26a	-	4.10a	4.91a	-	3.58ab	4.66a				
T ₆	-	3.14b	4.08b	-	3.25b	3.86b	-	3.08d	3.10b				
$CV_{(0/2)}$													

Figure in the column having similar letter(s) do not differ significantly

Table 39. Yield, cost and return analysis of Onion-T.Aus-T.Aman cropping pattern as affected by fertilizer levels at Kushtia during 1999-2000 to 2001-02 (Avg. of 3 years)

Treat	Gra	in yield (t	/ha)	Stover/	straw yiel	d (t/ha)	CD	VC	CM	MDCD	
Treat.	Onion	T.Aus	T.Aman	Onion	T.Aus	T.Aman	GK	vC	GM	MDCK	
T_1	9.5	3.37	3.80	-	3.61	4.93	198860	14458	184402	1.54	
T_2	11.2	3.56	4.33	-	3.99	5.11	229945	15494	214451	3.44	
T_3	12.5	3.93	4.45	-	4.13	5.38	253140	17813	235327	4.29	
T_4	10.7	3.73	4.33	-	4.08	5.02	223635	14870	208765	3.16	
T_5	10.8	3.48	4.17	-	3.93	5.28	222240	12192	210048	3.74	
T_6	8.6	2.91	3.17	-	3.32	3.68	176645	0	176645	-	

* Variable Cost = Fertilizer cost only.

Price: Onion - Tk. 15.00/kg, T.Aus - Tk. 7.00/kg, T.Aman - Tk. 7.50/kg. Straw Tk. 0.50/kg

CP : T.Aus-T.Aman

Location : Golapganj and Moulvibazar, Sylhet (AEZ 20)

Year : 2001-02

Higher and identical grain yield of T.Aus rice was recorded from T_3 and T_2 followed by T_1 . Fertilizer dose from FRG '97 (T_4) and Farmers' practice gave identical yield and the lowest was recorded from no fertilizer treatment. Similarly, effect of cowdung was not evident in T.Aus rice. In T.Aman rice, almost similar result was found from the same treatment (T_2 and T_3). Regarding straw yield in T.Aus
rice, higher and identical yield was recorded from T_2 , T_3 and T_1 . But in T.Aman rice significantly higher yield was obtained from T_2 and T_3 . Results did not vary over the locations-Golapganj and Moulvibazar.

Cost and return analysis showed that the highest gross margin was obtained from T_2 followed by T_3 . But the highest MBCR was calculated from T_1 followed by T_2 . Due to additional cost for organic manure in T_3 , the MBCR was the lowest. Same trend was found at Moulvibazar.

		10	5	× 5	0			
	Grain yi	eld (t/ha)	Straw yi	Straw yield (t/ha)		Variable	Gross	MBCR
Treatment	TAUG	TAmon	ТАнс	TAmon	return	cost	margin	(over
	1.Aus	I.Aman	1.Aus	1.Aman	(Tk/ha)	(Tk/ha)	(Tk/ha)	control)
T_1	4.81b	4.98b	5.87a	6.23b	75801	5076	70725	7.24
T_2	5.17a	5.32a	6.31a	6.81a	81321	6573	74749	6.43
T_3	5.15a	5.30a	6.26a	6.70a	81037	9649	71388	4.35
T_4	3.25c	3.48d	4.45b	5.08c	54502	2825	51677	5.48
T 5	3.43c	3.69c	4.82b	5.24c	58191	3686	54505	5.20
T_6	2.67d	2.76e	3.23c	3.53d	39034	0	39034	-
LSD 0.05	0.23	0.20	0.40	0.35	-	-	-	-

Table 40. Yield, cost and return analysis of T.Aus -T.Aman rice cropping pattern as affected by fertilizer levels at Golapganj FSRD site, Sylhet during 2001-02

* Variable Cost = Fertilizer Cost only

CP : T.Aus-T.Aman Location : Moulvibazar, Sylhet (AEZ 20) Year : 2001-02

Higher and similar grain yield of T.Aus rice was recorded from T_3 , T_2 and T_1 . Fertilizer dose from FRG '97 (T₄) and Farmers' practice gave identical yield and the lowest was recorded from no fertilizer treatment. In T.Aman rice, almost similar result was found from T_2 and T_3 . Effect of higher levels of nutrients was evident in T.Aman rice. Regarding straw yield in T.Aus rice, higher and identical yield was recorded from T_2 and T_3 . In T.Aman rice similar trend was found.

Cost and return analysis showed that the highest gross margin was obtained from T_2 followed by T_3 and T_1 . But the highest MBCR was calculated from T_1 followed by T_2 . Due to additional cost for organic manure in T_3 , the MBCR was the lowest. STB fertilizer dose for HYG was found superior in terms of yield and economic return.

	Grain yi	eld (t/ha)	Straw yi	eld (t/ha)	Gross	Variable	Gross	MBCR
Treatment	ΤΔμε	T Aman	T Aus	T Aman	return	cost	margin	(over
	1.Aus	1.Aman	1.Aus	1.Aman	(Tk/ha)	(Tk/ha)	(Tk/ha)	control)
T_1	4.98a	4.30b	5.98b	5.33b	74875	4016	70859	9.00
T_2	5.19a	4.61a	6.36a	5.79a	80285	5099	75186	8.15
T_3	5.17a	4.56a	6.23a	5.79a	79616	8171	71445	5.00
T_4	3.47b	3.20c	4.89c	4.86c	55393	2825	52568	5.90
T5	3.45b	3.39c	4.93c	4.88c	58769	3408	55361	5.88
T_6	2.84c	2.43d	3.38d	3.06d	38723	0	38722	-
LSD _{0.05}	0.23	0.21	0.20	0.26	-	-	-	-

Table 41. Yield, cost and return analysis of T.Aus -T.Aman rice cropping pattern as affected by fertilizer levels at Moulvibazar MLT site, Sylhet during 2001-02

* Variable Cost = Fertilizer Cost only

Location : Jhalokati, Barisal (AEZ 13) Year : 2000-01

Significantly higher grain yield of T.Aus rice was recorded from T_3 . In IPNS treatment (T_3) cowdung was applied along with inorganic fertilizers gave the highest yield. Effect of cowdung on the grain yield of T.Aus rice was evident. However, STB fertilizer doses for HYG and MYG along with FRG '97 produced statistically similar yield. Farmers practice and no fertilizer treatment also produced lowest and similar yield. In T.Aman rice, almost similar trend was observed. Response of cowdung applied in T.Aus rice was also apparent in T.Aman rice also. Cost and return analysis showed that the highest gross margin and MBCR was obtained from the treatment T_3 .

	Grain yield (t/ha)		Straw yield (t/ha)		Gross	Variable	Gross	MBCR
Treatment	T.Aus	T.Aman	T.Aus	T.Aman	return (Tk/ha)	cost (Tk/ha)	margin (Tk/ha)	(over control)
T ₁	3.52b	3.53bc		-	46330	4339	41991	2.49
T_2	3.46b	3.63b	-	-	46670	4425	42245	2.52
T_3	4.11a	4.32a	-	-	59510	5067	54443	4.73
T_4	3.44b	3.76b	-	-	47460	3722	43738	3.20
T_5	2.93c	3.12cd	-	-	39920	2434	37486	1.81
T_6	2.70c	2.68d	-	-	35520	-	35520	-

Table 42. Yield, cost and return analysis of T.Aus -T.Aman rice cropping pattern as affected by fertilizer levels at Jhalokati MLT site, Barisal during 2002

* Variable Cost = Fertilizer Cost only

Price (Tk./ka): T.Aus rice= 6.00, T.Aman= 7.00, Urea= 7.00, T.S.P= 15.00, MP= 9.00, Gypsum= 4.50, Zinc oxide= 50, CD= 0.50

СР	: Mungbean-T.Aus-T.Aman
Location	: Bhola, Barisal (AEZ 13)
Year	: 2000-01

Significantly the highest seed yield of Mungbean was recorded from T_3 where cowdung was applied along with inorganic fertilizers. However, yield did not vary between two STB fertilizer doses T_2 and T_1 (HYG and MYG) as well as FRG '97 (T₄). Similarly Farmers' practice (T₅) and Control (T₆) also gave identical yield. Farmers did not apply any fertilizers in Mungbean, therefore, it was same to Control treatment. In T.Aus rice, the higher grain yield was recorded from T₃ but it was also identical to T₂, T₁ and T₄. In T.Aman rice higher yield was obtained from T₂ followed by T₁. Yield did not differed significantly among the different nutrient packages except with T₂ and Control (T₆).

The highest gross margin was obtained from T_3 and MBCR also highest in T_3 . Two fertilizer doses for MYG (STB & FRG '97) also gave higher MBCR due to less fertilization cost.

Table 43. Yield, cost and return analysis of Mungbean-T.Aus-T.Aman cropping pattern as affected by fertilizer levels at Bhola MLT site, Barisal during 2001-02

Treat.	G	rain yield (t/h	a)	CD	VC	GM	MRCP
	Mungbean	T.Aus	T.Aman	GK	ve	GM	MDUK
T_1	0.76b	3.07ab	4.04ab	66017	4767	61250	4.19
T_2	0.83b	3.17ab	4.43a	69923	6110	63813	3.91
T_3	0.92a	3.39a	3.89b	71543	4416	67127	5.78
T_4	0.82b	3.28ab	3.70b	63157	3958	59199	4.33
T ₅	0.66c	2.79b	3.67b	55383	2434	52949	3.84
T_6	0.67c	2.23c	2.77c	46016	0	46016	-

* Variable Cost = Fertilizer cost only.

Price (Tk./kg): Urea= 7.00, TSP= 15.00, MP= 9.00, Gypsum= 4.50, CD= 0.50, Mungbean= 20.00, T.Aus= 6.00, T.Aman= 7.00

СР	: Potato-Jute
Location	: Munshiganj (AEZ 19)
Year	: 1999-2000 to 2001-02

Average of three years data showed that yield of potato significantly influenced by different doses of fertilizers. The initial soil status of the experimental site (Appendix table 2) showed that except nitrogen all other nutrient elements are at optimum level to very high. Therefore, P and K were applied as maintenance dose and no sulphur was applied at all. The yield difference was mainly due to nitrogen and cowdung. The significantly highest tuber yield was recorded from IPNS (T₃) treatment followed by farmers' practice (T₅). Farmers of Munshiganj traditionally apply a very high dose of NPK in Potato which is much higher than the recommended dose. STB fertilizer dose for HYG produced 2^{nd} highest yield. Fertilizer doses for MYG (STB & FRG '97) gave similar yield.

Similarly, in Jute, higher yield was recorded from T_3 and T_5 followed by T_2 . Since the soil was initially rich with P, K and S and there should be a residual effect on the succeeding crop, therefore, only nitrogen was applied as per treatment and maintenance dose for K was applied. Farmers' also apply only nitrogen in Jute as their traditional practice. Fertilizer doses for MYG (STB & FRG '97) gave similar yield. Similar trend was found in case of stick yield. However, results over the years slightly varied. During 2000-01 and 2001-02, fiber yield of Jute did not vary significantly among the different treatments except with T_1 and T_6 but in 1999-2000, T_3 , T_5 and T_2 gave higher and identical yield over other treatments.

Regarding cost and return analysis the highest gross margin was calculated from T_3 followed by T_2 . The variable cost was highest in Farmers' practice as they apply a very high dose of fertilizer in Potato. The second highest figure was found in IPNS due to the cost of cowdung applied in Potato. Due to higher fertilizer cost, the margin was less in farmers' practice. The highest MBCR was found in T_1 and T_2 . However, the gross return was higher in Farmers' practice (T_5) but due to higher fertilizer dose as well as IPNS could be suggested for the cropping pattern at Munshiganj in terms of yield, economic return and long term soil fertility management.

	1999-	2000	2000-	2001	2001-2002		
Tractor out	Potato	Jute	Potato	Jute	Potato	Jute	
Treatment			Grain yield/ fib	ore yield (t/ha)			
T_1	26.9c	1.50b	27.3c	1.72b	29.8c	1.90b	
T_2	33.5b	1.84ab	31.6b	1.90ab	32.1b	2.05ab	
T_3	34.5a	2.02a	33.5a	2.0a	33.6a	2.44a	
T_4	27.5c	1.52b	28.7c	1.92a	29.5c	1.98ab	
T ₅	33.8ab	1.97a	32.8a	2.03a	33.8a	2.40a	
T_6	26.9c	1.50b	17.0d	1.07c	18.5d	1.08c	
			Stick Yield (t/ha	a)			
T_1	-	2.67b	-	3.77b	-	4.05b	
T_2	-	2.95ab	-	3.89ab	-	4.25ab	
T_3	-	3.58a	-	4.06a	-	4.52a	
T_4	-	2.70b	-	3.90ab	-	4.18ab	
T ₅	-	3.53a	-	4.28a	-	4.45a	
T_6	-	2.67b	-	1.82c	-	1.90c	

Table 44. Effect of different nutrient management packages on the yield of crops in Potato-Jute cropping patterns at Munshiganj during 1999-2000 to 2001-02

	Grain/fiber	vield (t/ha)	Stick vi	eld (t/ha)	Gross	Variable	Gross	MBCR
Treatment	Potato	Jute	Potato	Jute	return (Tk/ha)	cost (Tk/ha)	margin (Tk/ha)	(over control)
T ₁	28.0	1.71	-	3.50	125085	4086	121001	11.4
T_2	32.4	1.93	-	3.70	146305	5806	140498	11.6
T_3	33.9	2.15	-	4.05	154306	8362	145944	9.0
T_4	28.6	1.81	-	3.59	128345	5832	122513	8.6
T_5	33.5	2.13	-	4.09	152654	18360	134294	4.0
T_6	17.4	1.07	-	1.85	78410	0	78410	-

Table 45. Yield, cost and return analysis of Potato-Jute cropping pattern as affected by fertilizer levels at Munshiganj MLT site during 1999-2000 to 2001-02 (Avg. of 3 years)

* Variable Cost = Fertilizer Cost only

CP: Chilli -T.AmanLocation: Lebukhali, Patuakhali (AEZ 18)Year: 2001-02

Fruit yield of Chilli did not vary appreciably among the different nutrient packages except with Farmers practice and control treatment. Response of higher levels of nutrients as well as IPNS was not observed in Chilli. However, from initial soil nutrient status it was found that the soil is deficit in NPK and therefore, a high dose of nutrients was applied. In T.Aman rice almost similar trend of result was observed in case of grain and straw yield. Cost and return analysis showed that the highest gross margin as well as MBCR was calculated fromT₄. From one year study it was found that fertilizer dose for MYG (FRG '97) showed better performance in terms of yield and return.

Table 46. Yield, cost and return analysis of Chilli-T.Aman rice cropping pattern as affected by fertilizer levels at Lebukhali, Patuakhali during 2001-02

Treatment	Fruit/Grain yield (t/ha)		Straw vi	Straw vield (t/ba)		Variable	Gross	MBCR
			Straw yield (tha)		return	cost	margin	(over
	Chilli	T.Aman	Chilli	T.Aman	(Tk/ha)	(Tk/ha)	(Tk/ha)	control)
T ₁	1.83a	3.84a	-	5.67a	90030	10851	79179	2.27
T_2	1.78a	3.94a	-	5.82a	88815	14138	74677	1.66
T_3	1.87a	3.98a	-	5.86a	92435	14958	77477	1.81
T_4	1.84a	3.73a	-	5.59a	89800	5630	84170	4.34
T_5	1.40b	3.31b	-	5.13b	71530	3435	68095	1.79
T_6	1.34b	2.68c	-	4.72c	65375	0	65375	-

* Variable Cost = Fertilizer Cost only

CP : Mustard-Boro Location : Manikganj (AEZ 8) Year : 2001-02

The highest seed yield of Mustard was obtained from IPNS (T_3) which was identical to T_2 and T_4 . Farmers' practice (T_5) also produced identical yield with STB fertilizer dose for MYG (T_1). Usually farmers' apply a higher dose of N and K and they did not use any zinc or boron fertilizer. The soil was deficit with Zn and B. That's why the seed yield of Mustard was comparatively lower in Farmers' practice. In Boro rice, higher grain yield was recorded from T_3 followed by T_2 . Other fertilizer packages did not vary significantly except with no fertilizer (T_6) treatment. Effect of higher levels of fertilizer was evident in the yield of crops. Regarding stover/straw yield more or less similar trend was observed.

From cost and return analysis it was found that the highest gross margin was obtained from IPNS treatment (T₃) followed by FRG '97 (T₄). MBCR was the highest in T₄. Treatment T₁, T₃ and T₅ gave almost similar MBCR but much lower than T₄.

	Grain yie	Grain yield (t/ha)		Straw yield (t/ha)		Variable	Gross	MBCR
Treatment	Mustard	Boro	Mustard	Boro	return (Tk/ha)	cost (Tk/ha)	margin (Tk/ha)	(over control)
T ₁	0.718c	5.72b	1.93b	5.14b	57043	8036	49007	3.01
T_2	0.885ab	6.15ab	2.13ab	4.49c	62171	10571	51600	2.77
T ₃	0.950a	6.49a	2.45a	5.31b	66101	10381	55720	3.20
T_4	0.817abc	5.80b	2.01a	5.84a	59225	5528	53697	4.77
T ₅	0.757bc	5.96b	1.98b	4.21c	58968	8587	50381	3.04
T ₆	0.325d	3.91c	0.99c	3.13d	32845	0	32845	-

Table 47. Yield, cost and return analysis of Mustard-Boro cropping pattern as affected by fertilizer levels at Manikganj during 2001-02

* Variable Cost = Fertilizer Cost only

Location : Kaliakoir (AEZ 28) Year : 2001-02

Seed yield of Mustard varied significantly due to different fertilizer doses. Significantly higher seed yield was recorded from IPNS (T₃) and STB fertilizer dose for HYG (T₂). Fertilizer doses for MYG (STB & FRG '97) also produced similar yield. The soil was deficit in nutrients and higher level of nutrients produced higher yield over other lower levels treatments. Usually farmers' apply a higher dose of N and K and they did not use any zinc or boron fertilizer. The soil was deficit with Zn and B. That's why the seed yield of Mustard was comparatively lower in Farmers' practice. In Boro rice, significantly higher grain yield was recorded from T_3 . Yield did not vary significantly in other treatments except with control treatment.

From cost and return analysis it was found that the highest gross margin was obtained from IPNS treatment (T₃) followed by FRG '97 (T₄) but MBCR was the highest in T₄ followed by T₁. Due to higher fertilization cost the MBCR was comparatively less in T₂, T₃ and T₅.

Table 48. Yield, cost and return analysis of Mustard-Boro cropping pattern as affected by fertilizer levels at Kaliakoir during 2001-02

	Grain yield (t/ha)		Straw yield (t/ha)		Gross	Variable	Gross	MBCR
Treatment	Mustard	Boro	Mustard	Boro	return	cost	margin	(over
	mastara	Dere	mastara	Bolo	(Tk/ha)	(Tk/ha)	(Tk/ha)	control)
T_1	0.623b	6.28b	1.5b	8.2b	66660	7259	59401	4.24
T_2	0.772a	6.48b	1.8a	8.5ab	70474	9847	60627	3.51
T_3	0.807a	6.77a	1.8a	8.9a	73643	11501	62142	3.28
T_4	0.595bc	6.35b	1.4b	8.1b	66709	5579	61130	5.52
T ₅	0.580c	6.46b	1.4b	8.0b	67374	9901	57473	3.18
T ₆	0.227d	3.26c	0.70c	6.7c	35896	0	35896	-

* Variable Cost = Fertilizer Cost only

Location : Mymensingh (AEZ 9) CP : Mustard (BARI Sarisha 9)-Boro (BRRI Dhan 29) Year : 2002-03

Seed yield of Mustard varied significantly due to different fertilizer doses. Significantly higher seed yield was recorded from IPNS (T_3) and STB fertilizer dose for HYG (T_2). Fertilizer doses for MYG (STB & FRG '97) also produced similar yield. The soil was deficit in nutrients and higher level of nutrients produced higher yield over other lower levels treatments. In Boro rice, almost similar trend was observed. Significantly higher grain yield was recorded from T_2 and T_3 treatment. However, fertilizer dose for MYG from FRG '97 gave significantly higher yield over STB fertilizer dose for MYG. Regarding stover/straw yield almost result was observed.

From cost and return analysis it was found that the highest gross margin was obtained from IPNS treatment (T₃) followed by STB fertilizer dose for HYG (T₂) and FRG'97 (T₄). MBCR was the highest in T₄ followed by T₁. Due to higher fertilization cost the MBCR was less in T₂, T₃ and T₅.

Table 49. Yield and economics of Mustard-Boro cropping pattern as affected by fertilizer levels at Mymensingh during 2002-03

	Grain yiel	Grain yield (t/ha)		Straw yield (t/ha)		Variable	Gross	MBCR
Treatment	Mustard	Boro	Mustard	Boro	return	cost	margin	(over
	wiustaru	DOIO	wiustaru	DOLO	(Tk/ha)	(Tk/ha)	(Tk/ha)	control)
T_1	0.72b	4.75c	1.60b	5.98ab	53915	9011	44904	2.00
T_2	0.81a	5.83a	1.90a	7.10a	64485	12539	51946	1.44
T ₃	0.94a	5.93a	2.05a	7.39a	65955	13266	56189	1.68
T_4	0.71bc	5.30b	1.50b	4.83b	57175	6088	51087	2.83
T5	0.66c	4.51d	1.46b	5.63ab	50632	7626	43006	1.20
T_6	0.42d	3.05e	0.77c	4.20c	33863	0	33863	-

Variable Cost = Fertilizer Cost only

Tugatus ant	Mustard	Boro
Treatment	(N-P-K-S-Zn-B-CD)	(N-P-K-S-Zn-CD)
T ₁	67-22-25-16-1-0.5	98-13-45-5-1
T_2	99-28-36-19-2-0.5	138-19-63-7-1.5
T ₃	84-23-21-19-2-0.5 + CD 5 t/ha	138-19-63-7-1.5
T_4	60-15-10-10-0-0-0	100-15-35-6-1
T5	138-38-39-0-0-0	115-35-26-7-0
T ₆	0-0-0-0	0-0-0-0

Different fertilizer doses for Mustard-Boro cropping pattern at Mymensingh

Appendix table 1. Initial soil status of the experimental site

	Land			0.0	Total N	K	Р	S	Zn	В
Location with AEZ	type	R/I	pН	(%)	(%)	(m.eq./100g soil)		ррі	m	
Muktagacha (9)	MHL	Ι	5.56	1.98	0.171(L)	0.085 (VL)	7.33 (VL)	28.3 (Opt.)	-	-
Phulpur (9)	MHL	Ι	5.22	1.17	0.08 (VL)	0.15 (M)	15.3 (M)	11.6 (L)	1.30 (M)	0.20 (L)
Netrokona (9)	MHL	Ι	5.08	1.38	0.09 (L)	0.15 (M)	4.68 (VL)	14.1 (L)	1.08 (M)	0.31 (M)
Satkaniya (23)	MHL	Ι	5.6	1.95	0.08 (VL)	0.08 (L)	2.67 (VL)	16.3 (L)	-	-
Narikeli (9)	MHL	Ι	5.8	1.0	0.06 (VL)	0.08 (VL)	8.15 (L)	12.72 (L)	0.67 (L)	1.39 (VH)
Melandah (9)	MHL	Ι	4.7- 5.2	0.75- 1.28	0.06-0.10 (L)	0.18-0.76 (M)	7.99-11.32 (L)	7.69-10.9 (L)	1.84-5.1 (M)	0.05-0.29 (L)
Sherpur (9)	MHL	Ι	5.5	0.55- 1.31	0.025-0.11 (VL)	0.06-0.15 (VL)	4.2-11.5 (L)	6.66-15.5 (L)	0.28-0.79 (VL)	0.61-2.75 (VH)
Kendua (9)	MHL	Ι	5.6	3.58	0.15 (L)	0.12 (L)	1.59 (VL)	16.6 (L)	1.08 (M)	-
Kishoreganj (9)	MHL	Ι	5.62	2.83	0.09 (L)	0.31 (M)	4.11 (VL)	21.9 (M)	1.27 (M)	-
Laksam (19)	MHL	Ι	5.5	1.80	0.09 (L)	0.26 (M)	32.0 (VH)	15.0 (L)	0.45 (L)	0.52 (O)
Lebukhali (13)	MHL	R	5.3	1.44	0.08 (VL)	0.28 (Opt)	4.4 (VL)	33.46(Opt)	0.34(VL)	-
Paba (11)	MHL	Ι	8.2	1.53	0.11 (L)	0.25 (H)	32.0 (VH)	78.1 (VH)	1.35 (M)	0.66 (M)
Natore (11)	MHL	R	8.3	-	0.10 (L)	0.20 (O)	8.43 (L)	26.71 (L)	0.61 (L)	-
Barind (25)	MHL	Ι	5.6	1.04	0.06 (VL0	0.19 (M)	3.05 (VL)	4.83 (L)	2.30 (M)	0.33 (L)
Munshiganj(19)	MLL	Ι	4.9	1.97	0.11 (L)	0.30 (Opt)	29.0 (Opt)	127.8 (VH)	4.36 (VH)	0.58(Opt)
Atkapalia (18)	MHL	R	7.2	1.66	0.091 (L)	0.18 (M)	2.0 (VL)	25.8 (O)	0.62 (L)	0.15 (L)
Feni (18)	MHL	Ι	6.78	1.54	0.08 (VL)	0.052 (VL)	1.40 (VL)	8.81 (VL)	0.52 (L)	0.25 (L)
Laxmipur (18)	MHL	R	6.6	2.12	0.12 (L)	0.19 (M)	1.5 (VL)	31.3 (VH)	0.85 (L)	0.47 (O)
Syedpur (3)	MHL	Ι	5.8	2.1	0.09 (L)	0.045 (VL)	11.65 (L)	8.52 (L)	10.64 (L)	0.24 (L)
Kushtia (11)	MHL	Ι	8.1	2.54	0.15 (L)	0.69 (VH)	3.98 (VL)	30.0 (O)	0.82 (L)	0.36 (M)
Shibpur (19)	MHL	Ι	5.62	1.70	0.13 (L)	0.17 (M)	6.1 (L)	30.8 (O)	1.17 (M)	0.22 (L)
Bagherpara (11)	MHL	Ι	-	-	0.11 (L)	0.39 (H)	17.9 (M)	7.34 (VL)	3.29 (VH)	0.4 (M)
Norail (11)	MHL	Ι	-	-	0.11 (L)	0.27 (M)	1.88 (VL)	36.0 (H)	2.57 VH)	0.82 (O)
Goyeshpur (11)	MHL	I	7.7	2.06	0.12 (L)	0.23 (M)	6.5 (VL)	5.36 (M)	0.45 (M)	0.33 (O)
Sujanagar (11)	MHL	Ι	8.4	-	0.10 (L)	0.39 (VH)	1.25 (VL)	7.52 (VL)	1.23 (M)	0.27 (L)
Ishan Gopalpur (12)	MHL	Ι	7.5	-	0.18 (M)	0.42 (VH)	9.03 (L)	18.0 (M)	-	-
Golapganj (20)	MHL	R	5.20	1.70	0.08 (VL)	0.05 (VL)	3.25 (VL)	22.5 (M)	0.73 (L)	0.36 (M)
Moulvibazar (20)	MHL	R	4.74	1.95	0.09 (VL)	0.17 (M)	9.56 (L)	22.3 (M)	3.30 (VH)	0.58 (O)
Bhola (13)	MHL	R	7.1	-	0.57 (VL)	0.50 (VH)	8.8 (L)	27.2 (O)	1.59 (O)	0.48 (O)
Jhalokati (13)	MHL	R	6.5	-	0.12 (L)	0.39 (VH)	7.6 (L)	50.3 (VH)	0.93 (M)	-
Dumuria (13)	MHL	R	-	-	-	-	-	-	-	-
Kolaroa (11)	MHL	I	8.1	1.88	0.09 (L)	0.22 (M)	4.80 (VL)	13.2 (L)	0.51 (L)	-
Joypurhat (25)	MHL	Ι	5.8	1.93	0.09 (L)	0.076 (L)	3.42 (VL)	7.35 (VL)	-	0.12 (VL)
Gabtali (25)	MHL	Ι	5.9	1.85	0.09 (L)	0.125 (VL)	6.67 (L)	16.2 (M)	0.76 (L)	0.22 (L)
Manikganj	MLL	Ι	7.15	1.47	0.09 (VL)	0.19 (M)	3.3 (VL)	13.1 (L)	0.62 (L)	0.047 (VL)
Kaliakoir	MLL	I	6.12	1.59	0.084 (VL)	0.16 (L)	6.63 (VL)	15.33 (M)	0.84 (L)	0.23 (L0

Site	Cropping pattern	Variety	Seed rate (kg/ha)	Planting time	Harvesting time
Muktagacha	Mustard	Tori-7	10	4th week of Nov	1 st week of Feb
C	Boro	BRRI Dhan 28	40	2 nd week of Feb	3 rd week of May
	T.Aman	BRRI Dhan 33	40	4th week of July	1 st week of Nov
Bagherpara	Mustard	Tori-7	08	3rd week of Nov	2 nd week of Feb
0	Boro	BRRI Dhan 28	40	3rd week of Feb	Last week of May
	T.Aman	BR 11	40	Last week of July	4 th week of Nov
Gabtali	Mustard	Tori-7	08	4 th week of Nov	1 st week of Feb.
	Boro	BRRI Dhan 28	50	2 nd week of Feb	2 nd week of May
	T.Aman	BRRI Dhan 32	50	2 nd week of July	Last week of Oct
Narikeli	Potato	Cardinal	2000	3 rd week of Nov	1 st week of March
	Jute	O-9897	8	3 rd week of March	3 rd week of July
	T.Aman	BRRI Dhan 33	40	Last week of July	Last week of Oct.
Sherpur	Wheat	Kanchan	100	2 nd week of Dec.	Last week of March
	Jute	O-9897	8	2 nd week of April	Last week of July
	T.Aman	BRRI Dhan 32	50	1 st week of Aug	Last week of Oct
Kishoregonj	Wheat	Kanchan	120	1 st week of Dec.	^{3rd} week of March
	Jute	Falgunitosa	08	1 st week of April	1 st week of Aug
	T.Aman	BR 11	50	2 nd week of Aug	4 th week of Nov
Lebukhali	Chilli	Local	-	2 nd week of Jan.	4 th week of April
	T.Aman	BR-23	40	Last week of Aug	Last week of Dec
Melandaha	Mustard	Tori 7	6	3rd week of Nov.	1 st week of Feb.
	Boro	BRRI Dhan 29	40	2 nd week of Feb.	Last week of May
	T.Aman	BRRI Dhan 33	40	3 rd week of July	1 st week of Nov.
Kendua	Boro	BR 3	40	1 st week of Feb.	3 rd week of May
	T.Aman	BRRI Dhan 32	40	Last week of July	3 rd week of Nov
Phulpur	Boro	BRRI Dhan 28	40	Last week of Jan.	1 st week of May
	T.Aman	BRRI Dhan 33	40	Last week of July	Last week of Oct.
Netrokona	Boro	Pajam	40	1 st week of Feb.	2 nd week of May
	T.Aman	BRRI Dhan 33	40	Last week of July	Last week of Oct.
Joypurhat	Boro	BRRI Dhan 29	40	Last week of Jan.	3 rd week of May
	T.Aman	BRII	40	Last week of July	2 nd week of Nov
Satkaniya	Boro	BR 29	35	3rd week of Jan	2 nd week of May
	T.Aman	BRRI Dhan 30	35	Last week of July	Last week of Nov
Syedpur	Potato	Cardinal	1500	1 st week of Dec.	2 nd week of Feb.
	Boro	BRRI Dhan 28	40	1 st week of March	1 st week of July
- ·	I.Aman	BRII	40	2 nd week of July	3 rd week of Nov.
Feni	Boro	BRRI Dhan 29	40	1 st week of Feb.	Last week of May
NT '1	I.Aman	BK II	40	3 rd Week of July	3 rd Week of Nov
Norall	Boro	BKKI Dhan 28	40	I st week of Feb.	3 rd Week of May
D 1	I.Aman	BKII	40	2nd 1 CD	
Paba		DDDI Dhan 20	1800	2 nd week of Dec	Last week of March
Natara	I.Aman	DC 1	40	<u>Ath</u> week of July	1st week of Nov.
Natore	G.nut T.Amon	DG-1 DD 11	- 40	^{2nd} week of Jan.	2 rd week of Ney
Donind	I.Alliali Datata	DK 11	1800	2 week of July	3 week of Nov.
Darina	Polalo T. Amon	DDDI Dhan 20	1800	2nd week of how	2 nd week of March
Munchigani	Dotato	Diamont	1500	L ast week of Nov	2 week of Oct.
Wullsinganj	Iute	$\Omega_{-}0807$	10	2 nd week of April	2 nd week of July
Atkanalia	Gnut	Dhaka-1	10	1 st week of Ian	3 rd week of May
Акарана	T Aman	BRRI Dhan 32	40	1 week of Aug	3 rd week of Nov
Layminur	Gnut	DG_2	+0	1 st week of Ian	Last week of May
Lannipu	T Aman	BRRI Dhan 32	40	Last week of July	3 rd week of Nov
Goveshpur	Wheat	Kanchan	120	1 st week of Dec	^{3rd} week of March
Soyesiipui	Inte	O-9897	08	3 rd week of April	3 rd week of July
	T.Aman	BR 11	50	Last week of July	3 rd week of Nov
Sujanagar	Boro	BRRI Dhan 29	120	3 rd week of Feb	Last week of May
Sujunugai	T.Aman	BR 11	40	Last week of July	3 rd week of Nov
Chandina	Potato	Diamont	1500	1 st week of Dec	2 nd week of Feb
Chanalia	T.Aus	BRRI Dhan 32	40	Last week of April	3 rd week of July
	T.Aman	BR 11	40	1 st week of Aug.	3 rd week of Nov.

Appendix table 2. Crop management practices

Appendix table 2. Contd.

Site	Cropping pattern	Variety	Seed rate (kg/ha)	Planting time	Harvesting time
Laksam	Boro	BRRI Dhan 29	40	Last week of Jan.	2 nd week of May
	T.Aman	BRRI Dhan 32	40	1st week of Aug.	1 st week of Dec.
Shibpur	Boro	BRRI Dhan 29	40	Last week of Jan.	^{3rd} week of May
_	T.Aman	BRRI Dhan 32	40	1st week of Aug.	1 st week of Dec.
Kushtia	Onion	Taherpuri	-	1 st week of Jan.	1 st week of April.
	T.Aus	IR 50	40	4th week of May	1 st week of Aug.
	T.Aman	BR 22	40	^{3rd} week of Aug.	2^{nd} week of Dec.
Bhola	M.bean	BARI M.bean-2	60	2 nd week of Feb	Mid April
	T.Aus	BR-14	40	2nd week of May	3rd week of July
	T.Aman	BR-23	40	Last week of July	Last week of Nov.
Jhalokati	T.Aus	Kazla	40	3rd week of May	3 rd week of July
	T.Aman	BR-23	40	Last week of July	Last week of Nov.
Dumuria	Sesame	Local	8	1st week of March	Last week of May
	T.Aman	BR 23	40	3 rd week of Aug.	2^{nd} week of Dec.
Kolaroa	Boro	BRRI Dhan 28	40	Last week of Jan.	1 st week of May
	T.Aman	BR-11	40	3 rd week of July	3 rd week of Nov.
Golapganj	T.Aus	BR 26	40	1st week of June	Mid. Aug.
	T.Aman	BRRI Dhan 32	40	1 st week of Sept.	Last week of Nov.
Moulvibazar	T.Aus	BR 26	40	1st week of June	Mid. Aug.
	T.Aman	BRRI Dhan 32	40	1 st week of Sept.	Last week of Nov.
Manikganj	Mustard	Tori-7	8	Last week of Oct.	3 rd week of Jan.
	Boro	BRRI Dhan 29	40	3 rd week of Feb.	1 st week of June
Kaliakoir	Mustard	Tori-7	8	2 nd week of Nov	Last week of Jan.
	Boro	BRRI Dhan 29	40	2 nd week of Feb.	4 th week of May

Abstract

An on-farm experiment was conducted at three different locations viz. Rangpur, Comilla and Khulna during 1999-2000 to 2001-02 to see the effect of Boro rice straw in corporation on the yield of T.Aman rice in Boro-T.Aman rice system. Boro rice was grown with recommended fertilizer and it was harvested at different height to remain straw in the soil. In T.Aman rice, ¹/₃rd and ²/₃rd Boro rice straw was incorporated to the soil along with full doses as well as reduced doses of inorganic fertilizers for MYG and HYG. Only inorganic fertilizers of recommended dose for MYG and HYG and farmers' practice were also included to compare. Results showed that significant effect was observed on the yield of T.Aman rice due to incorporation of Boro rice straw in the soil along with inorganic fertilizers at Rangpur and Khulna. But at Comilla no significant effect of rice straw on T.Aman rice was observed at all.

Introduction

Boro-T.Aman rice system is a predominant cropping pattern in Bangladesh under irrigated medium high to medium low land condition. Due to continuous practice of rice based cropping system the production seems to have reached in a stagnant position in spite of using more and more fertilizers. Use of organic matters like cowdung and farmyard manure is decreasing because of utilization as fuel materials. Further, continuous cultivation of HYV rice over the years is exhausting the soil nutrients. Thus, organic matter content and soil fertility is decreasing day by day. Recycling of organic matter is essential for maintaining soil fertility. Establishment of dhaincha or any other green manuring crop is very difficult because of heavy rainfall in the month of May. As such, alternative strategy might be incorporation of rice straw. Boro rice straw may be used as an alternate source of organic matter and may stabilize the yield of the crops under Boro-Fallow-T.Aman rice system.

Generally, Boro rice is harvested in the month of May and particularly in medium low land due to high rainfall and flash flood water farmers are forced to harvest the crop at the top remaining the straw. Thus the Boro rice straw can be utilized as organic residue to the succeeding T.Aman rice. Therefore, the complementary use of rice straw with mineral fertilizer will help to increase use efficiency of applied fertilizers and maintaining soil fertility. With this view in mind the experiment was under taken to compare rice straw and inorganic fertilizer effects with conventional practice of chemical fertilizers application on Boro-T.Aman rice system.

Materials and Methods

The experiment was initiated from Boro season of 1999-2000 and continued to 2001-02. It was conducted at 3 different locations with 7 treatments and 6 (six) dispersed replications. The plot was divided into 7 (eight) sub-plot. The size of each unit plot was 10 m x 10 m.

In Boro rice recommended dose of fertilizers were applied in all the plots. Irrigation and other intercultural operations were done as and when necessary. Boro rice straw was harvested leaving 10, 20 and 30 cm straw from ground level. Yield and yield contributing characters of Boro rice were recorded as per requirement. Rice straw of Boro was incorporated in to the soil by ploughing. In T.Aman rice fertilizers were applied as per following treatments combinations. Seven treatments were as follows:

 $T_1 = \frac{1}{3}$ Boro rice straw ($\frac{2}{3}$ should be harvested from top) incorporation then T.Aman with RF₂

 $T_2 = \frac{2}{3}$ Boro rice straw ($\frac{1}{3}$ should be harvested from top) incorporation then T.Aman with RF₂

 $T_3 = T_2 + T$. Aman with 65-22-25-20-5 kg NPKSZn/ha.

- $T_4 = T_3 + T$.Aman with 50-18-16-20-5 kg NPKSZn/ha.
- T₅= Recommended fertilizer for high yield goal (RF₁)
- T₆= Recommended fertilizer for moderate yield goal (RF₂)
- T₇= Farmers practices (Harvesting).
- Note: $RF_1 = 76-16-46-11-1.5 \text{ kg/ha of NPKSZn}$ $RF_2 = 60-8-30-4 \text{ kg/ha of NPKS}$

Irrigation and other intercultural operations were done as and when necessary. Yield and yield contributing characters were recorded as per requirement and were statistically analyzed. Soil characteristics and different crop management practices followed in different sites are given in appendix I.

Results and discussion

Location : Rangpur Year of conduction: 1999-2000 to 2001-02

The performance of Boro rice presented in Table 1 showed that 5.54, 5.72 and 6.20 t/ha grain yield was obtained during 1999-2000, 2000-01 and 2001-02, respectively. Similarly, 6.42, 6.68 and 7.08 t/ha of straw yield was recorded during 1999-2000, 2000-01 and 2001-02, respectively. Plant height, panicle/hill, filled grain/panicle and 1000 seed weight did not vary markedly over the years.

Significantly higher grain yield of T.Aman rice was recorded from T₅ where Boro rice straw was incorporated traditionally (1.30 t/ha) along with 90-10-28-4 kg NPKS/ha (HYG). However, it was also identical to T₄ ($^{2}/_{3}$ rd rice straw i.e., 5.82 t/ha, with 50-18-16-20-5 kg NPKSZn/ha) and T₂ ($^{2}/_{3}$ rd rice straw i.e., 5.82 t/ha with MYG: 65 -7-20-3 kg NPKS/ha). Almost similar trend was observed over the years. These results indicated that the incorporation of $^{2}/_{3}$ -rice straw along with 65-7-20-3-0 and 50-18-16-20-5 kg NPKSZn/ha had significant positive effect on the yield of T.Aman rice.

The average of three years results revealed that the maximum gross margin (GM) and marginal rate of return (MRR) were Tk. 37431/ha and 1407%, respectively and these were calculated from the treatment T_5 . Economic return was also positive in the treatments T_4 and T_2 i.e., GM and MRR were Tk. 32646/ha & 727%, respectively in T₄ and Tk. 32011/ha & 337% in T₂. These indicated that the treatments T_5 , T_4 and T_2 were found to be agro-economically suitable for T.Aman rice production in Boro-T.Aman rice system.

Conclusion

From the three years results it is clear that incorporation of $^{2}/_{3}$ rd boro rice straw with 50-18-16-20-5 or 65-7-20-3-0 kg NPKSZn/ha, $^{2}/_{3}$ rd rice straw + 65-7-20-3 kg NPKS/ha and traditional incorporation of rice straw + 90-10-28-4 kg NPKS/ha (T₅) had positive effect on the productivity and profitability of T.Aman rice in Boro-T.Aman rice system.

Year	Grain yield (t/ha)	Straw yield (t/ha)	Effective panicle/ hill (no.)	Filled grain/ panicle (no.)	1000 seed wt. (g)	Plant height (cm)
1999-2000	5.54	6.42	12.8	103	23.8	85
2000-2001	5.72	6.68	13.5	112	22.9	87
2001-2002	6.20	7.08	13.2	114	23.0	86

Table 1. Performance of boro rice (BRRI Dhan 29) of the experimental plots of Nilphamari MLT site, OFRD, Rangpur during 1999-2000 to 2001-2002

Table 2. Effect of boro rice straw on the yield of T.Aman rice in the Boro-T.Aman rice systems during 1999-2000, 2000-2001 and 2001-2002 at Nilphamari MLT site, OFRD, Rangpur

Tractmont		Grain yie	eld (t/ha)	
Treatment	1999-00	2000-01	2001-02	Mean
T ₁	4.55cd	4.69c	4.72d	4.65
T_2	5.00abc	5.14abc	5.43abc	5.19
T_3	4.86bc	5.00abc	5.10bcd	4.99
T_4	5.21ab	5.37ab	5.53ab	5.37
T ₅	5.46a	5.58a	5.62a	5.55
T_6	4.24d	4.56c	4.61d	4.47
T_7	4.78bc	4.90bc	4.93cd	4.87
CV (%)	7.70	9.7	8.0	-
		Straw Yie	eld (t/ha)	
T_1	5.46cd	5.65bc	5.74cd	5.62
T_2	6.08b	6.28ab	6.36abc	6.24
T ₃	5.83bc	6.09bc	6.13bcd	6.02
T_4	6.19ab	6.40ab	6.50ab	6.36
T ₅	6.66a	6.92a	6.98a	6.85
T_6	5.23d	5.49c	5.55d	5.42
T ₇	6.03b	6.35ab	6.40abc	6.26
CV (%)	7.4	9.2	8.5	-

Mean followed by the common letter(s) are not significantly different at the 5% level by DMRT.

Table 3. Effect of boro rice straw on the economy of T.Aman rice in Boro-T.Aman rice system at Nilphamari MLT site, OFRD, Rangpur during 1999-2000 and 2000-01

Treatment	Gross return (Tk./ha)	Variable cost (Tk./ha)	Gross margin (Tk./ha)	BCR	MBCR (over T ₆)	MRR (%)
			Year: 1999-2	2000		
T ₁	38730	10486	28244	3.69	1.75	(-) 909
T_2	43040	11461	31579	3.76	2.92	330
T_3	41795	12270	29525	3.41	1.73	(-) 256
T_4	44775	12663	32112	3.54	2.40	658
T ₅	47010	9877	37133	4.76	16.34	1534
T_6	36535	9236	27299	3.96	-	-
T_7	41255	10129	31126	4.07	5.28	(-) 2383
			Year: 2000-2	2001		
T_1	40345	11316	29029	3.57	0.94	(-) 1127
T_2	44260	12263	31997	3.61	2.08	313
T_3	43045	12742	30303	3.38	1.37	(-) 354
T_4	46160	13078	33082	3.53	2.14	827
T ₅	48100	10233	37867	4.70	14.90	1390
T_6	38725	9604	29121	4.03	-	-
T_7	42375	10522	31853	4.02	3.97	(-) 2081

Treatment	Gross return (Tk./ha)	Variable cost (Tk./ha)	t Gross margin (Tk./ha)	BCR	MBCR (over T ₆)	MRR (%)
			Year: 2001-	2002		
T ₁	40095	11179	28916	3.59	1.23	(-) 645
T_2	44640	12184	32456	3.66	2.66	352
T ₃	42930	13002	29928	3.30	1.42	(-) 309
T_4	46140	13397	32743	3.44	2.17	713
T ₅	47825	10532	37293	4.54	14.03	1303
T_6	38470	9865	28605	3.90	-	-
T_7	42090	10813	31277	3.89	3.82	(-) 2141
			Mean of 3	Years		
T ₁	39724	10994	28730	3.61	1.27	(-) 531
T_2	43980	11969	32011	3.67	2.53	337
T ₃	42590	12671	29919	3.36	1.51	(-) 298
T_4	45692	13046	32646	3.50	2.24	727
T 5	47645	10214	37431	4.66	15.07	1407
T_6	37910	9568	28341	3.96	-	-
T ₇	41907	10488	31419	4.00	4.34	(-) 2194
Price (Tk/kg)						
Urea	TSP MP	Gypsum Zin	c Sulphate Rice s	eed Rice grain	n Rice straw	
5.60 1	2.40 8.40	3.00	35.00 12.0	00 8.00	0.50	
5.70 1	3.14 8.70	2.75	35.00 14.5	50 8.00	0.50	

Location : Comilla Year of conduction: 2001-02

Boro: Results revealed that grain yield of Boro rice did not vary significantly among the treatments (Table-1). Similarly, plant height, yield attributes and straw yield was also identical among the treatments. Effect of rice straw incorporation in the soil was not observed following Boro rice.

T.Aman: Performance of T.Aman rice after incorporation of boro rice straw with different rates of fertilizer had been presented in table 2. The result showed no significant effect was observed among the treatments. Incorporation of Boro rice straw did not have any significant response on the yield of T.Aman rice. However, the treatments where Boro rice straw was incorporated along with inorganic fertilizers gave comparatively higher yield over the treatments received only inorganic fertilizers. Growth and yield contributing characters and straw yield almost follow the similar trend.

Cost and return analysis showed that the higher gross margin was obtained from treatment T_2 followed by T_4 where $2/3^{rd}$ Boro rice straw was incorporated along with inorganic fertilizers

Conclusion

Incorporation of Boro rice straw along with the chemical fertilizer influenced the grain and straw yield of succeeding T.Aman crop to some extent. Further study should be done with some soil physical parameters which might be improved by the addition of rice straw.

Treatment (N-P-K-S kg/ha)	Plant height (cm)	Effective tiller/ hill	Grain/ Panicle	1000- grain wt. (g)	Straw wt. (t/ha)	Yield (t/ha)
$T_1 = 95 - 20 - 40 - 10$	78.32	15.45	98.22	23.00	8.30	6.88
$T_2 = 95 - 20 - 40 - 10$	78.37	15.10	100.42	23.20	8.41	6.92
$T_3 = 95 - 20 - 40 - 10$	78.30	15.55	101.35	23.35	8.22	6.74
$T_4 = 95 - 20 - 40 - 10$	79.17	14.85	102.67	23.52	7.88	6.52
$T_5 = 95 - 20 - 40 - 10$	80.23	14.98	97.17	23.32	8.53	6.98
$T_6 = 95 - 20 - 40 - 10$	80.03	15.56	98.20	23.15	8.04	6.58
T ₇ = 95-20-40-10	79.35	14.32	102.60	23.25	8.12	6.78
$T_8 = 95 - 20 - 40 - 10$	80.32	14.02	102.05	23.52	7.86	6.53
LSD	NS	NS	NS	NS	NS	NS
CV%	10.52	13.86	9.37	7.25	12.14	10.11

Table 4. Yield and yield contributing characters of Boro under Boro - T.Aman cropping pattern at Comilla sadar during 2001-02

Table 5. Yield and yield contributing characters of T.Aman under Boro-T.Aman cropping pattern at Comilla sadar during 2001-02

	D1	T 00	D · 1		1000	~	· · · · · ·
	Plant	Effective	Panicle	Grain	1000-	Straw	Viald
Treatment	height	tiller/	length		Grain	wt.	1 leta
	(cm)	hill	(cm)	panicle	wt.(g)	(t/ha)	(t/ha)
$T_1 = 54-19-21-4.5 + 1/3 rd RS$	101.17	11.75	22.54	161.27	21.88	8.11	5.70
$T_2 = 54-19-21-4.5 + 2/3rd$ SR	99.40	12.72	22.65	159.75	22.13	6.97	5.98
$T_3 = 65-22-25-20+ \frac{1}{3} rd RS$	102.12	12.70	22.32	168.63	22.22	7.49	5.65
$T_4 = 50-18-16-20 + 2/3 rd RS$	103.20	12.22	23.34	166.72	22.21	8.05	5.75
$T_5 = 74 - 23 - 27 - 6.3$	99.17	12.50	22.48	165.84	22.35	7.78	5.56
$T_6 = 54 - 19 - 21 - 4.5$	101.20	11.57	23.36	167.75	22.37	7.62	5.44
T ₇ = 90-37-32	100.80	12.22	23.25	158.45	22.78	7.24	5.17
LSD	NS	NS	NS	NS	NS	NS	NS
CV (%)	8.88	13.13	11.48	14.55	7.61	10.88	12.98

Table 6. Cost and return analysis of the cropping pattern Boro- T.Aman rice system at Comilla sadar during 2000-01

Traatmant	Yield	(t/ha)	Variable	Gross return	Gross margin
Treatment	Boro	T.Aman	cost(tk/ha)	(t/ha)	(tk/ha)
T_1	6.92	5.70	6503	88340	81768
T_2	6.74	5.98	6572	89040	82468
T_3	6.52	5.65	7331	84000	76669
T_4	6.98	5.75	6740	89110	82370
T ₅	6.58	5.56	7946	84980	77034
T_6	6.78	5.44	6434	85540	79106
T_7	6.53	5.17	12541	81900	69359

• Variable Cost = Fertilizer cost only.

Price: T.Aus rice @ Tk. 7.00 /kg, T.Aman @ Tk. 7.00 /kg, Rice straw @ Tk. 1.00 /kg Urea @ Tk. 6.00 /kg, T.S.P @ Tk.15.00 /kg, M P @ Tk.9.00 /kg, Gypsum @ Tk.4.00 /kg,

Location : Kolaroa Year of conduction: 2001-02

The performance of Boro rice showed that 5.52 t/ha of grain and 6.60 t/ha of straw yield of Boro rice was obtained from T_6 (Table 1). The effects of treatment on the yield of T.Aman rice have been shown in (Table 2). Significantly higher yield was observed in T_7 followed by $T_5 \& T_2$. These results indicated that the incorporation of $2/3^{rd}$ rice straw along with 70-6-20-4 kg/ha NPKSZn had significant effect on the yield of T.Aman rice in comparison to only inorganic fertilizers.

The effect of rice straw on the economic performance of T.Aman has been shown in Table-3. The highest gross margin and benefit cost ratio was obtained from T_5 followed by T_2 . However this is the result of first year. The study will be continued for next year for concrete recommendation.

Treatment	Boro ric	e (t/ha)	Before T.Aman transplanting
Treatment	Grain yield	Straw yield	Boro rice straw incorporated (t/ha)
T ₁	5.25	5.50	1.86
T_2	5.52	6.13	3.60
T_3	5.26	5.63	1.90
T_4	5.42	6.38	3.61
T ₅	5.50	6.50	1.09
T_6	5.52	6.60	1.09
T_7	5.31	6.50	1.09
Average	5.40	6.18	2.03

Table 7. Performance of Boro rice and rice straw incorporated into the soil before T.Amantransplanting under Boro-T.Aman cropping pattern at Kalaroa MLT site during 2001-02

Table 8. Effect of Boro rice straw and fertilizer on yield and yield attributes of T.Aman rice under
Boro-T.Aman cropping pattern at Kalaroa MLT site, 2001-02

Treatment	Plant height	Filled grain /panicle	1000 grain weight (g)	Grain yield	Straw yield
	(cm)	(no.)	weight (g)	(t/ha)	(t/ha)
T ₁ = 1/3 boro rice straw + 70-6-20-4-0kg/ha NPKSZn	104.20a	99.58bc	21.97d	4.17b	4.72a
T ₂ = 2/3 boro rice straw + 70-6-20-4-0 kg/ha NPKSZn	103.00ab	104.67b	23.22bcd	4.77a	5.12a
T ₃ = 1/3 boro rice straw + 65-22-25-20-5 kg/ha NPKSZn	99.87bc	95.75c	22.34cd	4.02b	4.72a
T ₄ = 2/3 boro rice straw + 50-18-16-20-5 kg/ha NPKSZn	99.92bc	99.67bc	24.31abc	4.27b	4.77a
T₅ = HYG (RF₁) 91-7.8-26-5.2-0 kg/ha NPKSZn	98.67c	101.37bc	25.31ab	4.82a	5.15a
T ₆ = MYG (RF ₂) 70-6-20-4-0 kg/ha NPKSZn	99.97bc	99.02bc	24.81ab	4.02b	4.55a
T ₇ = (FP) 135-30-37.5-0-5.4 kg/ha NPKSZn	105.15a	111.72a	26.19a	4.97a	5.22a
CV (%)	2.31	4.14	5.67	5.23	9.33

Means followed by common letters are statistically similar at 5% level.

Table 9. Cost and return analysis of the cropping pattern Boro- T.Aman rice system at Kalaroa during 2001-02

Treatment	Gross return (Tk./ha)	TVC (Tk./ha)	Gross margin (Tk./ha)	BCR
T_1	31,550	9,819	21,731	3.21
T_2	35,950	10,769	25,181	3.39
T_3	30,500	12,429	18,071	2.45
T_4	32,275	12,775	19,500	2.53
T ₅	36,315	9,857	26,458	3.68
T_6	30,415	9,377	21,038	3.24
T_7	37,400	13,377	24.023	2.80

Price (Tk/kg): Urea= 6.00, Gypsum= 4.00, TSP= 14.00, MP= 10.00, ZnSO₄= 80.00 Rice grain= 7.00, Rice straw= 0.50

Site	Crop	Variety	Seed rate (kg/ha)	Planting time	Harvesting time
Nilphamari	Boro	BRRI Dhan 28	40	1 st week of Feb	Last week of May
	T.Aman	BR 11	40	3 rd week of July	4 th week of Nov
Kolaroa	Boro	BRRI Dhan 29	40	Last week of Jan.	Last week of April
	T.Aman	BR 11	40	3 rd week of July	3 rd week of Nov.
Comilla	Boro T.Aman	BRRI Dhan 29 BRRI Dhan 33	4040	1 st week of Feb 2 nd week of Aug	2 nd week of June 2 nd week of Nov

Appendix table 1. Crop management practices

Appendix table 2. Initial soil nutrient status of Rangpur

CEC	DH	OM	Ν	Ca	Mg	K	Р	S	Zn	В
CEC	г	(%)	(%)	me g/100g soil		Microgram/g soil				
0.19	5.3	1.58	0.08	2.5	0.6	0.10	15.2	16.5	1.20	0.21
			V. Low	Low	Low	Low	Med	Med	Med	Low

Appendix table 3. Initial soil analysis results of Kalaroa MLT site

Nutrient	Soil test value	Soil test interpretation
P ^H	8.1	Slightly alkaline
Organic matter (%)	1.88	Medium
EC (mmhos/cm)	0.66	Non saline
Total N (%)	0.092	Low
Available P (ppm)	4.80	Very low
K (meq./100g)	0.22	Medium
S (ppm)	13.21	Low
Zn (ppm)	0.51	Low

SUSTAINING CROP PRODUCTIVITY AND SOIL HEALTH THROUGH INTEGRATED FERTILIZER MANAGEMENT

Abstract

The experiment was conducted at Lebukhali FSRD site of OFRD, BARI, Patuakhali during 2001-02 to observe the effect of different nutrient management packages on soil fertility and productivity of Mungbean-T.Aus-T.Aman cropping pattern. Four different nutrient management packages (crop residues + CD @ 10 t/ha + estimated inorganic fertilizers, crop residues + CD @ 5 t/ha + estimated inorganic fertilizers and only inorganic fertilizers at recommended rate) along with Farmers' practice and no fertilizer control treatment were tested. Grain yield of crops did not vary significantly among the different nutrient management produced identical yield to recommended inorganic fertilizer dose (FRG'97). Regarding cost and return analysis, the highest gross margin as well as MBCR was calculated from T₃ where only crop residues were incorporated along with estimated inorganic fertilizers.

Introduction

Soil of tidal Ganges Floodplain (AEZ-13) is non-calcareous and silty clay to heavy clay in texture, slightly acidic in dry season to slightly alkaline in wet season (p^H 5.5-7.4). Generally fertility is poor, soil organic matter content is about 1% and native soil nitrogen and phosphorus content is low to very low. Drainage is very poor. Drying of soil results in very hard consistence difficult to plough for rabi crop cultivation with weak draft animal as available in the locality and type is medium high land to medium low land flooded twice daily usually from May to October. T.Aus, T.Aman and rabi crops (area coverage 25%) like Mungbean, Khesari, Cowpea, Chili are main crops. Farmers use very low amount of inorganic fertilizer. It is necessary to study the long term effect of integrated fertilizer management practices on major cropping pattern for sustaining soil fertility, crop productivity and for improvement of soil health. With this point of view Mungbean-T.Aus-T.Aman cropping pattern was selected as brown mungbean plant is a good source of organic matter that can be easily incorporated in soil without any extra cost. Farmers usually did not apply any organic manure in their traditional cultivation practice. Integrated nutrient management with organic and inorganic fertilizers will be very useful to improve and maintain soil fertility for sustainable crop production. Keeping this view in mind the experiment was designed with following objectives-

- To increase crop productivity.
- To improve soil health.
- To improve soil physical condition.

Materials and Methods

The experiment was initiated under rainfed condition at FSRD site, Lebukhali, Patuakhali in rabi season of 2001-2002, with Mungbean in Mungbean-T.Aus-T.Aman cropping pattern. Six treatments of fertilizer management with 5 dispersed replications were set up in RCB design. Treatments are given in table 1. A seed of BARI Mung-2 were sown at the rate of 30 kg/ha in line sowing of spacing 30 cm. Seeds were sown on 6 February 2002. Crop was infested by pod borer at ripening stage. Insecticide, Malathion was sprayed 2 times at 7 days interval. Pods were harvested two times first on April15-20, and finally on May 3-6, 2002. After then plants were incorporated in soil at the time of land preparation before T.Aus. For T.Aus fertilizer dose was estimated by deducting the amount of nutrient element that was added by mungbean plants. In the same way straw of T.Aus was incorporated in the soil during land preparation for T.Aman and fertilizer dose for T.Aus straw. Fertilizer doses were estimated on the basis of FRG'97 recommendation. Variety of T.Aus and T.Aman was BRRI Dhan-27 and BR-23, respectively. At the beginning of the experiment soil sample was collected

for chemical analysis and sent to SRDI regional laboratory, Khulna. Data was collected from plants sample.

	Estimated chemical fertilizer								
Treatment	Mungbean			T.Aus			T.Aman		
	Ν	Р	Κ	Ν	Р	Κ	Ν	Р	Κ
T_1 = Crop residues + Cowdung (10 t/ha) +	0	0	0	20	4	20	12	2	0
Estimated chemical fertilizer									
T_2 = Crop residues+ Cowdung (5 t/ha) +	0	3	0	20	4	20	12	2	0
Estimated chemical fertilizer									
T_3 = Crop residues+ Estimated chemical fertilizer	12	8	8	20	4	20	12	2	0
T_4 = Recommended fertilizer dose (FRG '97)	12	8	8	35	4	20	30	3	20
T ₅ = Farmers' practice (Mungbean: CD 3 t/ha)	0	0	0	60	0	0	40	0	0
T_6 = Control	0	0	0	0	0	0	0	0	0

Table 1.	Treatments	for	fertilizer	management
				0

To estimate the requirement of chemical fertilizer following information was followed.

Cowdung : 3-1-3 kg N-P-K per ton for following crop.

Crop residues (Mungbean) : 6 kg N per ton dry biomass to succeeding T.Aus.

Crop residues (T.Aus) : 2-0.5-8 kg N-P-K per ton dry biomass to succeeding T.Aman

Results and discussion

Grain yield of Mungbean did not vary significantly among the treatments except with Farmers' practice (T_5) and no fertilizer treatment (T_6). As Mungbean was the first crop of the cycle therefore, no crop residues were added. Application of only cowdung @ 10 t/ha produced identical yield to only inorganic fertilizers at recommended rate. In Farmers' practice, farmers' traditionally use 3 t/ha of cowdung in mungbean and no inorganic fertilizers were applied at all. But the yield was significantly lower than recommended fertilizer dose as well as other organic and IPNS treatment. In T.Aus and T.Aman rice similar trend was observed. Grain yield did not very significantly among the different treatments except with Farmers' practice and no fertilizer treatment. Identical yield was recorded from only inorganic fertilizer at recommended rate and IPNS based fertilizer doses. Almost similar result was found in case of straw/stover yield of crops. Farmers' apply only nitrogenous fertilizers; therefore, yield was lower than other fertilizer doses.

Regarding cost and return analysis, the highest gross margin as well as MBCR was obtained from treatment T_3 where only crop residues were incorporated along with estimated inorganic fertilizers. Incorporation of crop residues of Mungbean and T.Aus could reduce the inorganic fertilizer and thereby reduced cost of production. However, it was the result of first year, therefore, the experiment should be continued for another two years to see the effect of different treatments on soil physical properties as well as soil fertility and to draw a conclusion in this regard.

	Grai	Grain yield (kg/ha)			w yield (kg	g/ha)	Gross	Variable	Gross	MBCR
Treatment	Munahean		T Aman	Munahean		T Aman	return	cost	margin	over
	mungbean	1.Au3	r.Anan	Muligbean	1.705	i ./ undii	(Tk/ha)	(Tk/ha)	(Tk/ha)	control
T ₁	1224a	4121ab	4565a	3054	4520	4658	74800	43510	31290	6.28
T ₂	1211a	4146a	4581a	3005	4492	4620	74706	41235	33471	7.33
T ₃	1196a	4026ab	4630a	2980	4328	4682	74170	39420	34750	13.19
T 4	1183a	4067ab	4505a	2950	4265	4565	73305	40327	32978	9.03
T ₅	1080b	3205c	3150b	2680	3724	3466	56525	38542	17983	8.53
T_6	760c	2662d	2580c	1870	3452	2850	45415	37240	8175	-
CV (%)	8.60	6.31	12.27	-	-	-	-	-	-	-

 Table 2. Yield and economics of Mungbean-T.Aus-T.Aman cropping pattern as affected by different fertilizer doses at Lebukhali, Patuakhali during 2001-02

Input (Tk./kg): Urea = 6.00, TSP = 15.00, MP = 10.00, Mungbean seed = 40.00, T.Aus seed = 15.00, T.Aman seed = 15.00 Output (Tk./kg): Mungbean= 20.00, T.Aus rice= 5.00, T.Aman rice= 6.00, Rice straw = 0.50

Appendix Table 1. Effect of different nutrient management packages on yield and yield contributing characters in Mungbean under CP Mungbean-T.Aus-T.Aman during 2001-02 at FSRD site, Lebukhali, Patuakhali

Treatment	Plant pop./m ²	Plant height (cm)	No. of pods/ plant	No. of seeds/ pod	1000-grain wt. (gm)	Grain yield (kg/ha)	Stover yield (kg/ha)
T_1	39	51	12	9.0	31.0	1224a	3054
T_2	38	49	12	9.0	31.0	1211a	3005
T ₃	38	50	12	9.0	31.0	1196a	2980
T_4	39	48	12	9.0	30.5	1183a	2950
T ₅	39	47	11	9.0	30.0	1080b	2680
T_6	38	43	10	7.5	29.0	760c	1870
CV (%)						8.6	

Appendix Table 2. Effect of different nutrient management packages on yield and yield contributing characters in T.Aus under CP Mungbean-T.Aus-T.Aman during 2002 at FSRD site, Lebukhali, Patuakhali.

Traatmont	Daniala/m ²	Filled grain	Unfilled	1000-grain	Grain yield	Straw yield
Treatment	Famele/m	/Panicle	grain/panicle	weight (gm)	(kg/ha)	(kg/ha)
T ₁	150a	96a	8a	28.8a	4121ab	4520
T_2	149a	97a	6	28.8a	4146a	4492
T_3	144a	95a	6	28.8a	4026ab	4328
T_4	147a	96a	7	28.8a	4067ab	4265
T ₅	133b	84b	10	28.2b	3205c	3724
T_6	128c	74c	12	28.0b	2662d	3452
CV(%)	4.05	7.43		1.64	6.31	

Appendix Table 3. Effect of different nutrient management packages on yield and yield contributing characters in **T.Aman** under CP Mungbean-T.Aus-T.Aman during 2002 at FSRD site, Lebukhali, Patuakhali

Treatment	Panicle/	Filled grain	Unfilled grain/	1000-grain	Grain yield	Straw yield
	m ²	/panicle	panicle	weight (gm)	(kg/ha)	(kg/ha)
T_1	176a	96a	13	27.4a	4565a	4658
T_2	175a	96a	11	27.4a	4581a	4620
T_3	177a	97a	13	27.2a	4630a	4682
T_4	173a	96a	12	27.3a	4505a	4565
T_5	161b	76b	15	26.4b	3150b	3466
T_6	154b	67c	17	25.7c	2580c	2850
CV%)	2.77	4.59		0.52	12.27	

RESPONSE OF CROPS GROWN IN DIFFERENT CROPPING PATTERNS AND ENVIRONMENTS TO ADDED FERTILIZER NUTRIENTS

Abstract

The experiment was conducted at 27 different locations across the country with 8 dominant cropping patterns during 1999-2000 to 2001-02 to find out an optimum fertilizer dose for the crops grown in different cropping pattern & response of crops to NPKS. Four different levels of NPKS, viz. 0, MYG, HYG and HYG x 1.3 were tested. Results showed that a marked response on the yield of crops to N was evident irrespective of locations. Even in some locations the response was linear. A considerable response to P was also observed in most of the locations, particularly in P deficient soils. But response to K and S was not clear in some of the locations. From the yield data a response curve was drawn and optimum fertilizer dose for the crops were find out.

Introduction

Crops grown in different cropping patterns and environment responded differently to mineral fertilizer nutrients. The nature of response may vary over time. In the past, most of the fertilizer recommendations were individual crop basis. But there some residual effects of some nutrient elements particularly PKS and Zn are found in the succeeding crops. In Bangladesh different crops are grown in different cropping patterns under different agro-climatic condition. Recently BARC developed a national fertilizer recommendation guide '97 with fertilizer recommendation for different crops based on AEZ that needs to further update and verified for different dominant cropping patterns at different environments. Therefore, it is very important to verify and update the present recommendation of BARC FRG'97 for major crops under different agro-ecological condition.

Objective

> To determine optimum and economic dose of fertilizer nutrients for major crops grown in different environments.

Materials and Methods

The experiment on seven dominant cropping patterns was conducted during 1999-2000 to 2001-02 at different AEZs to determine optimum and economic dose of fertilizer nutrients for major crops grown in different environments. Details about site characteristics and crop management are given in appendix table 1 & 2, respectively. The experiment was laid out in RCB design with six replications across the field. Four different levels of NPK and S for different crops grown in different cropping patterns were tested all over the country. The treatment concept was as follows-

Levels	Ν	Р	K	S
0	0	0	0	0
1	MYG	MYG	MYG	MYG
2	HYG	HYG	HYG	HYG
3	HYG x 1.3	HYG x 1.3	HYG x 1.3	HYG x 1.3

Different cropping patterns tested in different locations						
Cropping pattern	Locations					
Mustard-Boro-T.Aman	Melandah, Narikeli, Muktagacha, Bagherpara					
Boro-T.Aman	Phulpur, Netrakona, Kishoreganj, Kendua, Ishan Gopalpur, Kolaroa, Hathazari, Syedpur, Polashbari, Nilphamari, Feni, Norail					
Wheat-Jute-T.Aman	Sherpur					
Wheat-T.Aman	Goyeshpur, Barind					
Groundnut-T.Aman	Laxmipur, Atkapalia					
Onion-B.Aman	Baliakandi					
T.Aus-T.Aman	Golapganj, Moulvibazar, Jhalokati					
Chilli-T.Aman	Lebukhali. Patuakhali					

D 44 4 4 1 1 1.00 41

Results and Discussion

Cropping pattern	:	Mustard - Boro - T.Aman
Location	:	Bagherpara, Jessore
Year of establishment	:	1999-2000 to 2001-02

Mustard

In Mustard, response of nitrogen towards the seed yield was observed. Seed yield increased sharply up to 60 kg N/ha and after that level the trend was increasing but rate was slow and yield increase up to the highest level of N (100 kg/ha). Similarly, phosphorus and sulphur also showed some response towards the yield. Yields increased markedly up to 11 kg P/ha and then slowly increase up to the highest level 25 kg/ha. Sulphur also showed some response and yield increase markedly up to 24 kg/ha. However, response of K was not evident.

Boro rice

Grain yield of rice increased with the increase of nitrogen and the trend was linear. Highest yield was recorded from the highest level of N. However, grain yield increase sharply up to the application of N @ 130 kg/ha and thereafter the trend was not so sharp. Similar trend was observed in case of phosphorus and sulphur and the trend was linear. Highest grain yield was recorded from the highest level of P and S (10 kg/ha and 24 kg/ha).

T.Aman rice

Response of nitrogen was found on the yield of T.Aman rice. Yield increased linearly with the increase of nitrogen. Similarly, response to P was linear and the highest yield was recorded from the highest level of P. But response of sulphur in T.Aman rice was not evident.

From the average of three years data a response curve was drawn.

Figure 1. Response of Mustard to NPS grown in Mustard-Boro-T.Aman cropping pattern during 1999 to 2002 at FSR site Bagherpara, Jessore

Figure 2. Response of Boro rice to NPS grown in Mustard-Boro-T.Aman cropping pattern during 1999 to 2002 at FSR site Bagherpara, Jessore

Figure 3. Response of T.Aman rice to NPS grown in Mustard-Boro-T.Aman cropping pattern during 1999 to 2002 at FSR site Bagherpara, Jessore

Fertilizer level			Grain yield (t/ha)					
		1999-2000	2000-2001	2001-2002	Average			
N level (kg/ha)	0	0.228	0.652	0.580	0.487			
	61	0.564	0.928	1.000	0.831			
	86	0.568	1.063	1.270	0.967			
	120	0.561	1.110	1.330	1.000			
P level (kg/ha)	0	0.506	1.000	1.090	0.865			
	11	0.583	1.018	1.240	0.947			
	15	0.568	1.063	1.270	0.967			
	21	0.589	1.215	1.160	0.988			
S level (kg/ha)	0	0.550	1.018	0.920	0.833			
	24	0.561	1.115	1.270	0.962			
	30	0.568	1.063	1.270	0.967			
	42	0.600	1.135	1.390	1.040			

Table 1. Effect of different level of fertilizer nutrients on the yield of Mustard in Mustard-Boro-T.Aman cropping pattern at Bagherpara, Jessore, during 1999-2000 to 2001-02

Table 2. Effect of different level of fertilizer nutrients on the yield and economics of Boro in Mustard-
Boro-T.Aman cropping pattern at Bagherpara, Jessore, during 1999-2000 to 2001-02

E ('l' - 1 - 1	Grain yield (t/ha)							
Fertilizer level	1999-2000	2000-2001	2001-2002	Average				
N level (kg/ha)								
0	2.73	3.45	2.83	3.00				
90	3.55	4.77	5.68	4.67				
125	4.30	5.87	5.99	5.39				
175	4.83	6.41	6.49	5.91				
P level (kg/ha)								
0	3.06	5.02	5.73	4.60				
5	4.02	5.29	5.95	5.09				
7	4.30	5.87	5.99	5.39				
10	4.72	6.21	6.34	5.76				
S level (kg/ha)								
0	4.02	5.14	5.68	4.95				
9	4.25	5.44	5.76	5.15				
12	4.30	5.87	5.99	5.39				
24	4.67	6.07	6.32	5.69				

Table 3. Effect of different level of fertilizer nutrients on the yield of T.Aman in Mustard-Boro-
T.Aman cropping pattern at Bagherpara, Jessore, during 1999-2000 to 2001-02

Eastilizan laval	Grain yield (t/ha)							
Fertilizer level	1998-99	1999-2000	2000-2001	Average				
N level (kg/ha)								
0	2.00	2.90	2.65	2.52				
60	2.57	4.11	3.35	3.34				
80	3.48	4.79	3.56	3.94				
105	4.14	4.81	3.43	4.13				
P level (kg/ha)								
0	2.60	3.51	3.49	3.20				
6	3.51	3.81	3.64	3.65				
8	3.48	4.79	3.56	3.94				
11	3.99	4.76	3.67	4.14				
S level (kg/ha)								
0	2.86	4.10	3.30	3.46				
11	3.28	4.23	3.34	3.57				
14	3.48	4.79	3.56	3.94				
18	4.04	4.27	3.59	2.97				

Location : Melandah, Jamalpur Year of establishment: 2001-02

Mustard

In Mustard, a positive response of N was observed. Seed yield increased with the increase of N level and the highest yield was recorded from 100 kg N/ha. Similarly P, K and S also have some response and yield increased up to 24, 26 and 30 kg/ha of P, K and S, respectively.

Boro

In Boro rice, grain yield increased up to 145 kg N/ha and then showed to decrease. As regards P, K and S, grain yield increased up to 26, 45 and 22 kg/ha P, K and S, respectively.

T.Aman

In T.Aman rice, the grain yield increased markedly up to 100 kg N/ha and then decreased sharply. Similarly P, K and S also showed a positive response and yield increased up to 16, 29 and 13 kg/ha of P, K and S, respectively.

From the data a response curve was drown and the fertilizer dose that maximized yield and profit was find out.

	Cron	Agron	omically	/ optimu	n dose	Econo	omically	optimur	n dose	
	Стор	Ν	Р	K	S	Ν	Р	K	S	
	Mustard	104	24	26	32	97	22	27	27	
	Boro	144	26	46	23	144	24	45	21	
	T.Aman	104	16	29	13	98	14	27	12	
Seed yield (kg/ha)	1200 1000 800 600 400 200 0	0409x ² + 8.50 0184	083x + 524	.72	120 100 80 00 10 10 10 10 10 10 10 10 10 10 10 10		y = -0.541 [°] R ² = 0.887	7x ² + 29.7 6	28x + 553.6	.7
	0 32.5	65	97.5	130		0	10		20	30
	1	levels (kg	/ha)				ΡL	evels (ko	g/ha)	
	1200 $y = -0.570$ $R^2 = 0.91$)5x ² + 29.73 75	8x + 589.3	5	120		= -0.2931x = 0.7565	² + 18.95x	x + 626.61 ●	

1000

800

600

400

200

0

0

10

30

20

S Levels (kg/ha)

40

Seed yield (kg/ha)

40

1000

800

600

400

200

0

0

Seed yield (kg/ha)

 $R^2 = 0.9175$

10

20

KLevels (kg/ha)

30

Figure 5. Response of Boro rice to NPKS grown in Mustard-Boro-T.Aman cropping pattern during 2001-02 at MLT site Melandah, Jamalpur

Figure 6. Response of T.Aman rice to NPKS grown in Mustard-Boro-T.Aman cropping pattern during 2001-02 at MLT site Melandah, Jamalpur

Nu	trient levels (kg/	ha)	Grain yield			
Mustard	Boro	T.Aman	Mustard (kg/ha)	Boro (t/ha)	T.Aman (t/ha)	
N levels						
0	0	0	533	2.43	1.50	
70	100	70	860	4.98	4.04	
100	145	100	1050	6.21	5.25	
130	190	130	907	5.64	4.37	
P levels						
0	0	0	560	4.01	2.19	
18	18	13	850	5.43	3.64	
24	26	16	1050	6.21	5.25	
30	34	20	920	5.60	4.25	
K levels						
0	0	0	597	4.78	3.41	
18	32	23	887	5.84	4.69	
26	45	29	1050	6.21	5.25	
34	58	35	913	6.00	4.73	
S levels						
0	0	0	630	4.86	2.50	
25	16	9	846	5.78	3.93	
30	22	13	1050	6.21	5.25	
35	28	17	880	5.93	4.55	

Table 4. Effects of different levels of fertilizer nutrients on the yield of crops in Mustard-Boro-T.Aman cropping pattern at Melandah, Jamalpur, 2001-02

Location : Narikeli, Jamalpur Year of establishment : 2001-02

Mustard

In Mustard, a positive response of N towards the seed yield of Mustard was observed. Seed yield increased with the increase of N level and the highest yield was recorded from 80 kg N/ha. Similarly P, K and S also have some response and yield increased up to 20, 36 and 20 kg/ha of P, K and S, respectively.

Boro

In Boro rice, grain yield increased with the increase of N and the highest yield was obtained from 130 kg N/ha and then started to decrease. As regards P, K and S, grain yield increased up to 20, 60 and 20 kg P, K and S, respectively.

T.Aman

In T.Aman rice, the grain yield increased markedly up to 60 kg N/ha. Thereafter yield also increased slowly up to 80 kg N/ha and then started to decrease. Similarly P, K and S also showed some response and yield increased up to 16, 45 and 9 kg/ha of P, K and S, respectively.

From the data a response curve was drown and the fertilizer dose that maximized yield was find out.

Cron	Agron	Agronomically optimum dose				Economically optimum dose			
Crop	Ν	Р	K	S	Ν	Р	K	S	
Mustard	94	20	28	17	73	18	26	16	
Boro	115	17	60	18	-	-	-	-	
T.Aman	83	14	34	7	-	-	-	-	

Figure 7. Response of Mustard to NPKS grown in Mustard-Boro-T.Aman cropping pattern during 2001-02 at MLT site Narikeli, Jamalpur

Figure 8. Response of Boro rice to NPKS grown in Mustard-Boro-T.Aman cropping pattern during 2001-02 at MLT site Narikeli, Jamalpur

Figure 9. Response of T.Aman rice to NPKS grown in Mustard-Boro-T.Aman cropping pattern during 2001-02 at MLT site Narikeli, Jamalpur

Table 5.	Effects of different levels of fertilizer nutrients on the yield of crops in Mustard- Boro -
	T.Aman cropping pattern at Narikeli, Jamalpur, 2001-02

Nutrient levels (kg/ha)			Grain yield			
Mustard	Boro	T.Aman	Mustard (kg/ha)	Boro (t/ha)	T.Aman (t/ha)	
N levels		·	· · · · · · ·			
0	0	0	575	3.28	2.43	
60	100	60	1025	4.23	3.75	
80	130	80	1303	4.95	3.87	
100	160	100	1201	4.10	3.75	
P levels						
0	0	0	825	4.32	3.43	
12	12	8	1105	4.92	3.67	
20	20	16	1303	4.95	3.87	
28	28	24	1150	4.72	3.77	
K levels						
0	0	0	1001	4.45	3.32	
24	40	30	1205	4.58	3.60	
36	60	45	1303	4.95	3.87	
48	80	60	1107	4.60	3.50	
S levels						
0	0	0	1025	4.53	3.02	
10	10	6	1142	4.73	3.34	
20	20	9	1303	4.95	3.87	
30	30	12	1109	4.67	3.37	

Location :	:	Muktagacha, Mymensingh
Year of establishment:	:	1999-2000 to 2001-02

Mustard

Generally seed yield of Mustard was very low even less than present national average. Late sowing and rainfall in early November was the main reason for that lower yield. Average of three years data showed that seed yield was increased with the addition of N fertilizer. Seed yield increased sharply up to the application of 60 kg/ha of N. After that level yield increased slowly up to 80 kg/ha. Response of Mustard to nitrogen was evident. Similarly, response to P, K and S was observed to some extent. Seed yield increased up to 25, 50 and 7 kg/ha of P, K and S, respectively. **Boro rice**

Grain yield increased with the increase of nitrogen up to 120 kg/ha of N and after that tended to decrease. Similar trend was also observed in case of P, K and S. Grain yield increased up to 24, 45, and 12 kg/ha of P, K and S, respectively.

T.Aman

Almost similar trend of response was found in case of T.Aman rice. Grain yield increased up to the application of 60 kg/ha of N and thereafter started to reduce. Similar trend was also observed in case of P, K and S. Grain yield increased up to 16, 60, and 5 kg/ha of P, K and S, respectively.

Generally response of crops to nutrients was quadratic in nature. From the data a response curve was drown.

Figure 10. Response of Mustard to NPKS grown in Mustard-Boro-T.Aman cropping pattern during 1999 to 2002 at Muktagacha, Mymensingh

Figure 11. Response of Boro to NPKS grown in Mustard-Boro-T.Aman cropping pattern during 1999 to 2002 at Muktagacha, Mymensingh

Figure 12. Response of T.Aman to NPKS grown in Mustard-Boro-T.Aman cropping pattern during 1999 to 2002 at Muktagacha, Mymensingh

Eastilizary 1 areal	Grain yield (t/ha)							
Fertilizer level	1999-2000	2000-2001	2001-2002	Average				
N level (kg/ha)								
0	0.397	0.383	0.613	0.464				
40	0.450	0.500	0.880	0.610				
60	0.453	0.540	0.986	0.660				
80	0.503	0.600	0.876	0.660				
P level (kg/ha)								
0	0.436	0.420	0.853	0.570				
20	0.440	0.480	0.840	0.587				
25	0.453	0.540	0.987	0.660				
35	0.453	0.484	0.920	0.619				
K level (kg/ha)								
0	0.440	0.440	0.913	0.598				
35	0.463	0.520	0.867	0.617				
50	0.453	0.540	0.987	0.660				
70	0.443	0.496	0.933	0.624				
S level (kg/ha)								
0	0.400	0.410	0.853	0.556				
5	0.453	0.480	0.880	0.604				
7	0.453	0.540	0.987	0.660				
10	0.450	0.500	0.960	0.637				

Table 6. Effect of different level of fertilizer nutrients on the yield of Mustard in Mustard-Boro-
T.Aman cropping pattern at Muktagacha, Mymensingh during 1999-2000 to 2001-02

Table 7. Effect of different level of fertilizer nutrients on the yield and economics of Boro in Mustard-
Boro-T.Aman cropping pattern at Muktagacha, Mymensingh during 1999-2000 to 2001-02

Fertilizer level	Grain yield (t/ha)							
	1999-2000	2000-2001	2001-2002	Average				
N level (kg/ha)								
0	3.25	4.25	4.10	3.87				
80	4.37	4.95	4.46	4.59				
120	4.45	5.55	5.51	5.17				
160	4.17	5.68	5.35	5.07				
P level (kg/ha)								
0	4.05	4.57	4.06	4.23				
16	4.15	5.10	4.73	4.73				
24	4.45	5.55	5.51	5.51				
32	4.52	5.88	5.46	5.46				
K level (kg/ha)								
0	4.28	4.78	4.56	4.56				
30	4.40	4.93	5.11	5.11				
45	4.45	5.55	5.51	5.51				
60	3.53	5.45	4.63	4.63				
S level (kg/ha)								
0	4.23	4.58	4.63	4.63				
8	4.50	5.13	5.20	5.20				
12	4.45	5.55	5.51	5.51				
16	4.80	5.43	5.50	5.50				

Fertilizer level	Grain yield (t/ha)						
	1999-2000	2000-2001	2001-2002	Average			
N level (kg/ha)							
0	2.84	2.83	2.00	2.56			
45	3.92	3.70	2.30	3.31			
60	4.31	4.13	3.57	4.00			
85	4.41	4.53	3.00	3.98			
P level (kg/ha							
0	2.99	3.13	2.67	2.93			
13	4.09	3.73	2.58	3.47			
16	4.31	4.13	3.57	4.00			
23	4.36	4.16	3.25	3.92			
K level (kg/ha							
0	3.43	3.40	2.44	3.09			
45	4.22	3.90	2.95	3.69			
60	4.31	4.13	3.57	4.00			
85	4.09	4.03	2.93	3.68			
S level (kg/ha							
0	4.00	3.90	2.58	3.49			
4	4.59	4.23	2.75	3.86			
5	4.31	4.13	3.57	4.00			
7	4.50	4.20	3.67	4.12			

Table 8. Effect of different level of fertilizer nutrients on the yield of T.Aman in Mustard-Boro-T.Aman cropping pattern Muktagacha, Mymensingh during 1999-2000 to 2001-02

Cropping pattern	:	Wheat-Jute- T.Aman
Location	:	Sherpur MLT site, Jamalpur (AEZ 9)
Year of establishment	:	2001-02

Wheat

Grain yield of Wheat increased with the increase of N levels up to 135 kg/ha of N and then tended to decline. Similarly, P, K and S showed a positive response towards the yield of Wheat. Grain yield increased up to 30, 75 and 25 kg/ha of P, K and S, respectively.

Jute

Fibre yield of Jute increased markedly with the increase of N and the highest yield was recorded from 120 kg/ha and then tended to decrease. Similarly response was evident in case of PKS and fibre yield increase appreciably up to 20 kg/ha, 80 kg/ha and 18 kg/ha, respectively.

T.Aman

Grain yield of T.Aman rice increased with the increase of N levels up to 100 kg/ha of N and then tended to decrease. Similarly, P, K and S showed a positive response towards the yield of T.Aman rice. Grain yield increased up to 15 kg/ha, 50 kg/ha and 10 kg/ha of P, K and S, respectively.

From the response curve a quadratic relationship was found and the nutrient dose that maximizes yield and profit was found out.

Crop	Agronomically optimum dose			Economically optimum dose				
	Ν	Р	K	S	Ν	Р	K	S
Wheat	135	30	75	26	133	30	72	24
Jute	132	20	83	18	117	19	76	17
T.Aman	100	16	49	10	96	14	48	10

Figure 13. Response of Wheat to NPKS grown in Wheat-Jute -T.Aman cropping pattern during at MLT site, Sherpur 2001-02

Figure 14. Response of Jute rice to NPKS grown in Wheat-Jute -T.Aman cropping pattern at MLT site, Sherpur during 2001-02

Figure 15. Response of T.Aman to NPKS grown in Wheat-Jute -T.Aman cropping pattern at MLT site, Sherpur during 2001-02

Nutrient levels (kg/ha)			Grain yield (t/ha)			
Wheat	Jute	T.Aman	Wheat	Jute	T.Aman	
N levels						
0	0	0	0.89	1.22	2.25	
95	80	70	2.20	2.85	4.34	
135	120	100	3.25	4.02	5.43	
175	160	130	2.78	3.25	4.84	
P levels						
0	0	0	2.23	1.77	2.33	
20	15	10	2.58	3.10	4.51	
30	20	15	3.25	4.02	5.43	
40	25	20	2.90	3.50	4.53	
K levels						
0	0	0	2.25	1.74	2.54	
50	50	40	2.75	3.15	4.35	
75	80	50	3.25	4.02	5.43	
100	110	60	2.87	3.81	4.56	
S levels						
0	0	0	2.3	1.84	2.44	
15	12	7	2.62	3.31	4.36	
25	18	10	3.25	4.02	5.43	
35	24	13	2.88	3.75	4.44	

Table 9. Effects of different levels of fertilizer nutrients on the yield of Wheat in Wheat-Jute -T.Aman cropping pattern at Sherpur MLT site, Jamalpur, 2001-02

Cropping pattern	:	Boro -T.Aman
Location	:	Phulpur, Mymensingh
Year of establishment	:	1999-2000 to 2001-02

Boro

Average of three years data showed that grain yield of Boro rice increased with the increase of nitrogen up 135 kg/ha and thereafter decline. Soil was deficient in N and therefore, response of N towards the yield was observed. In case of P, K and S the response was not clear towards the yield. Initially soil was not deficit with P and K, status was medium. Therefore, response of P and K was not evident. However, soil was deficient with S but response was not very clear. Grain yield increased slightly up to 20 kg/ha of S.

T.Aman

Average data showed that grain yield increased linearly with the increase of N and the highest yield was obtained from the highest level. As the yield increase linearly with the increase of N, therefore, it was not possible to find out the optimum rate. In case of P, K and S no appreciable yield increase was observed. However, soil was deficient with S but response was not very clear towards the yield.

Figure 16. Response of Boro to NPKS grown in Boro-T.Aman cropping pattern at Phulpur, Mymensingh in 2000 to 2002

Figure 17. Response of T.Aman to NPKS grown in Boro-T.Aman cropping pattern at Phulpur, Mymensingh in 2000 to 2002

Table 10. Effects of different levels of fertilizer nutrients on the yield of Boro rice in Boro -T.Aman
cropping pattern at Phulpur MLT site, Mymensingh, during 1999-2000 to 2001-02

Fertilizer level	Grain yield (t/ha)							
	1999-2000	2000-2001	2001-02	Average				
N level (kg/ha)								
0	3.85	4.44	3.95	4.08				
95	4.79	5.08	4.49	4.79				
135	4.84	5.36	5.10	5.10				
180	4.40	5.54	4.63	4.86				
P level (kg/ha)								
0	4.28	4.88	4.41	4.52				
8	4.43	5.25	4.58	4.75				
12	4.84	5.36	5.10	5.10				
16	4.40	5.03	4.41	4.61				
K level (kg/ha)								
0	4.40	5.09	4.61	4.70				
30	4.91	5.11	4.95	4.75				
42	4.84	5.36	5.10	5.10				
54	4.50	5.33	4.68	4.61				
S level (kg/ha)								
0	4.58	4.89	4.52	4.66				
14	4.92	5.23	4.62	4.92				
20	4.48	5.36	5.10	4.98				
26	4.26	5.53	4.88	4.89				
Eastilizar larval	Grain yield (t/ha)							
-------------------	--------------------	-----------	---------	---------	--	--	--	--
Fertilizer level	1999-2000	2000-2001	2001-02	Average				
N level (kg/ha)								
0	2.83	3.22	3.50	3.18				
70	4.44	4.55	4.33	4.44				
95	4.55	4.32	4.75	4.54				
130	5.10	4.66	4.40	4.72				
P level (kg/ha)								
0	4.35	4.15	4.20	4.23				
5	4.88	4.52	4.26	4.54				
7	4.55	4.32	4.75	4.54				
10	4.34	4.22	4.30	4.28				
K level (kg/ha)								
0	4.13	4.08	4.30	4.17				
22	4.28	4.25	4.45	4.33				
28	4.55	4.32	4.75	4.54				
38	4.30	4.11	4.34	4.25				
S level (kg/ha)								
0	4.18	4.12	4.28	4.19				
8	4.28	4.16	4.35	4.26				
11	4.55	4.32	4.75	4.54				
15	4.24	4.23	4.58	4.35				

Table 11. Effects of different levels of fertilizer nutrients on the yield of T.Aman rice in Boro -
T.Aman cropping pattern at Phulpur MLT site, Mymensingh during 1999-2000 to 2001-02

Cropping pattern	:	Boro -T.Aman
Location	:	Norail, Jessore
Year of establishment	:	1999-2000 to 2001-02

Average of three years data showed that grain yield increased linearly with the increase of N levels and the highest yield was recorded from the highest level of N. In case of P, grain yield increased linearly but slowly and the highest yield was recorded from the highest level of P. Initial soil nutrient status showed that soil was deficit with N and P and status of K and S was quiet high. Therefore, response to K and S was not studied. As the trend was linear, therefore, it is not possible to find out the optimum rate of nutrients.

T.Aman

Similar trend was found in T.Aman rice like Boro rice. Grain yield increased linearly with the increase of N and the highest yield was obtained from the highest level. In case of P similar trend was observed. As the trend was linear, therefore, it is not possible to find out the optimum rate of nutrients.

Figure 18. Response of Boro to NP grown in Boro-T.Aman cropping pattern at MLT site, Norail during 1999-2000 to 2001-02

Figure 19. Response of T.Aman to NP grown in Boro-T.Aman cropping pattern at MLT site, Norail during 1999-2000 to 2001-02

Table 12. Effects of different levels of fertilizer nutrients on the yield of Boro rice in Boro -T.Aman
cropping pattern at Norail, Jessore during 1999-2000 to 2001-02

		Grain yield (t/ha)					
Fertilizer I	evel	1999-2000	2000-2001	2001-02	Average		
N level (kg/ha)	0	2.04	2.03	2.35	2.14		
	88	4.27	4.00	3.86	4.04		
	123	4.80	4.53	4.76	4.69		
	172	5.60	4.72	4.75	5.02		
P level (kg/ha)	0	3.40	4.16	4.41	3.99		
	32	4.55	4.49	4.40	4.48		
	45	4.80	4.53	4.76	4.69		
	63	5.08	4.73	4.99	4.93		

Table 13. Effects of different levels of fertilizer nutrients on the yield of T.Aman rice in Boro -
T.Aman cropping pattern at Norail, Jessore during 1999-2000 to 2001-02

		Grain yield (t/ha)						
Fertilizer le	evel	1999-2000	2000-2001	2001-02	Average			
N level (kg/ha)	0	1.99	1.97	2.83	2.26			
	60	3.44	3.67	4.49	3.86			
	80	4.19	4.15	4.99	4.44			
	105	4.60	4.29	5.27	4.72			
P level (kg/ha)	0	4.19	3.93	4.65	4.15			
	25	4.15	3.88	4.89	4.34			
	19	4.19	4.15	4.99	4.44			
	33	4.49	4.05	5.08	4.54			

Location : Netrakona, Mymensingh Year of establishment: 1999-2000 to 2001-02

Boro

Average of three years data showed that grain yield was increased linearly with the increase of N levels and the highest yield was recorded from the highest level of N. As the yield increase linearly with the increase of N, therefore, it was not possible to find out the optimum rate. Another higher level of N should be included in future to find out the optimum rate of N for Boro rice.

In case of P response was also observed to some extent. Grain yield increased slowly up to the application of 12 kg/ha of P. Initial K status of the soil was very high, therefore, response of K was not evident. The initial S status of the soil was very low but the response was not clear. However, grain yield increased slowly up to 20 kg/ha of S.

T.Aman

Response of T.Aman rice to N was observed. Grain yield increased sharply up to 70 kg/ha of N and thereafter slowly increased up to 95 kg/ha then tended to decrease. In case of P and S the response is not clear but yield increase slowly but linearly and the highest yield was recorded from the highest level of P and S. As the initial K status of the soil was very high, therefore, response of K was not evident.

Figure 20. Response of Boro to NPKS grown in Boro-T.Aman cropping pattern at Netrakona, Mymensingh in 2000 to 2002

Figure 21. Response of T.Aman to NPKS grown in Boro-T.Aman cropping pattern at Netrakona, Mymensingh in 2000 to 2002

Table 14.	Effects of different levels of fertilizer nutrients on the yield of Boro rice in Boro -T.Amar
	cropping pattern at Netrakona MLT site, Mymensingh during 1999-2000 to 2001-02

Fortilizar laval	Grain yield (t/ha)							
Fertilizer level	1999-2000	2000-2001	2001-02	Average				
N level (kg/ha)				·				
0	3.20	3.79	3.72	3.57				
95	3.73	4.53	4.85	4.37				
135	3.94	4.85	5.47	4.45				
180	4.11	5.44	5.20	4.92				
P level (kg/ha)								
0	3.61	4.30	4.32	4.08				
8	3.83	4.43	4.67	4.31				
12	3.94	4.85	5.47	4.75				
16	3.98	4.53	4.07	4.19				
K level (kg/ha)								
0	3.97	4.28	4.05	4.10				
30	4.04	4.73	4.92	4.56				
42	3.94	4.85	5.47	4.75				
54	3.78	5.11	5.22	4.70				
S level (kg/ha)								
0	4.00	4.56	5.00	4.52				
14	4.03	4.74	4.87	4.55				
20	3.94	4.85	5.47	4.75				
26	4.01	4.83	4.87	4.57				

Eastilizary 1 areal	Grain yield (t/ha)							
Fertilizer level	1999-2000	2000-2001	2001-02	Average				
N level (kg/ha)								
0	2.65	2.89	2.66	2.73				
70	4.22	3.26	3.26	3.58				
95	4.45	3.71	3.76	3.97				
130	4.43	4.25	3.20	3.96				
P level (kg/ha)								
0	4.25	3.62	3.12	3.66				
5	4.60	4.01	3.22	3.94				
7	4.45	3.71	3.76	3.97				
10	4.63	4.24	3.52	4.13				
K level (kg/ha)								
0	3.85	3.49	3.39	3.58				
22	3.83	3.86	3.37	3.68				
28	4.45	3.71	3.76	3.97				
38	4.15	4.40	3.49	3.01				
S level (kg/ha)								
0	4.18	3.75	3.04	3.66				
8	4.33	3.90	3.37	3.87				
11	4.45	3.71	3.76	3.97				
15	4.67	4.06	3.50	4.08				

Table 15.Effects of different levels of fertilizer nutrients on the yield of T.Aman rice in Boro T.Aman cropping pattern at Netrakona MLT site, Mymensingh during 1999-2000 to 2001-02

Location : Kishoregonj Year of establishment: 2000 to 2002

Boro

Average of three years data showed that grain yield increased markedly with the increase of nitrogen up to 80 kg N/ha and after that level increased slowly up to 115 kg/ha of N. In case of P, K and S positive response was found to some extent. Yield increased slowly up to the application of 32, 55 and 9 kg/ha of P, K and S, respectively.

T.Aman

In T.Aman rice, a positive response of N was also observed and the grain yield increased rapidly up to 55 kg N/ha and then increased slowly up to 75 kg/ha. A very small response of P, K and S was also observed and grain yield increased up to 21, 36 and 5 kg/ha of P, K and S, respectively.

The trend of response was more or less quadratic in nature. From the response curve the optimum doses of the nutrients for different crops were calculated.

Cron	Agronomically optimum dose			Economically optimum dose			dose	
Crop	N	Р	K	S	Ν	Р	K	S
Boro	118	25	43	7	96	24	34	7
T.Aman	95	26	18	4	84	24	12	4

Figure 22. Response of Boro rice to NPKS grown in Boro-T.Aman cropping pattern at Kishoregonj during 2000 to 2002

Figure 23. Response of T.Aman rice to NPKS grown in Boro-T.Aman cropping pattern at Kishoregonj during 2000 to 2002

Fertilizer levels	Grain yield (t/ha)						
(kg/ha)	2000	2001	2002	Mean			
N (Levels)							
0	4.10	4.18	3.46	3.91			
80	5.65	5.26	4.19	5.03			
115	5.50	5.44	4.38	5.11			
150	5.13	5.06	4.30	4.83			
P (Levels)							
0	5.11	5.21	4.02	4.78			
23	5.15	5.20	4.26	4.87			
32	5.50	5.44	4.38	5.11			
41	5.15	5.13	4.32	4.87			
K (Levels)							
0	5.13	4.82	4.29	4.75			
40	5.32	5.17	4.29	4.93			
55	5.50	5.44	4.38	5.11			
70	4.61	5.10	4.35	4.69			
S (Levels)							
0	4.82	4.82	4.09	4.58			
7	5.22	4.98	4.28	4.83			
9	5.50	5.44	4.38	5.11			
11	5.02	5.01	4.32	4.78			

Table 16. Effects of different levels of fertilizer nutrients on the yield of Boro rice in Boro-T.Aman cropping pattern at Kishoregonj, 2000 to 2002

Table 17. Effects of different levels of fertilizer nutrients on the yield of T.Aman rice in Boro-T.Aman cropping pattern at Kishoregonj, 2000 to 2002

Fertilizer levels	Grain yield (t/ha)						
(kg/ha)	2000	2001	2002	Mean			
N (Levels)							
0	3.15	3.08	2.62	2.95			
55	3.65	3.85	2.99	3.50			
75	3.77	4.18	3.15	3.70			
95	3.63	3.72	2.94	3.43			
P (Levels)							
0	3.49	3.78	2.84	3.37			
16	3.66	3.97	2.95	3.53			
21	3.77	4.18	3.15	3.70			
26	3.69	3.89	3.15	3.58			
K (Levels)							
0	3.58	3.75	3.12	3.48			
28	3.66	3.87	2.79	3.44			
36	3.77	4.18	3.15	3.70			
44	3.57	3.90	2.86	3.44			
S (Levels)							
0	3.55	3.72	3.00	3.42			
3	3.58	4.00	3.03	3.54			
5	3.77	4.18	3.15	3.70			
7	3.60	3.71	2.89	3.40			

From the Mean data it was observed that in Boro rice, grain yield increased markedly with the increase of nitrogen up to 90 kg N/ha and after that level the rate (125 kg/ha) of increment was slow. In case of P and K a slow but positive response was found and the yield increased up to the application of 36 and 64 kg/ha of P and K, respectively. A positive response to sulphur was also observed to some extent and grain yield increased up to 22 kg/ha of S.

T.Aman

In T.Aman rice, almost similar trend like Boro rice was found. However, yield did not increase markedly due to increase of nutrient levels. Yield increased slowly up to the application of 76, 23, 42 and 12 kg/ha of NPKS, respectively.

Figure 24. Response of Boro rice to NPKS grown in Boro-T.Aman cropping pattern at Kendua, Kishoregonj during 2000 to 2002

Figure 25. Response of T.Aman rice to NPKS grown in Boro-T.Aman cropping pattern at Kendua, Kishoregonj during 2000 to 2002

Table 18.	Effects of a	different	levels o	f fertilizer	nutrients	on tl	he yield	of Boro	rice in	Boro-7	l.Aman
	cropping pa	attern at	Kendua	MLT site,	Kishorega	anj, 2	2000-02				

Fertilizer levels	Grain yield (t/ha)						
(kg/ha)	2000	2001	2002	Mean			
N (Levels)		•	•	•			
0	4.10	3.90	3.84	3.95			
90	5.28	4.91	5.32	5.17			
125	5.46	5.49	5.72	5.36			
160	5.15	5.09	5.40	5.21			
P (Levels)							
0	4.96	4.83	5.28	5.02			
26	5.32	5.28	5.36	5.32			
36	5.46	5.49	5.72	5.56			
46	5.18	5.27	5.44	5.30			
K (Levels)							
0	5.03	4.96	5.24	5.08			
46	5.31	5.26	5.24	5.27			
64	5.46	5.49	5.72	5.56			
82	5.25	5.28	5.24	5.26			
S (Levels)							
0	4.71	4.90	4.92	4.84			
16	5.15	5.23	5.16	5.18			
22	5.46	5.49	5.72	5.56			
28	5.13	5.28	5.44	5.28			

Fertilizer levels	Grain yield (t/ha)						
(kg/ha)	2000	2001	2002	Mean			
N (Levels)				·			
0	3.27	4.56	3.45	3.76			
57	3.68	4.67	3.69	4.01			
76	4.02	4.87	3.76	4.22			
95	3.70	4.68	3.72	4.03			
P (Levels)							
0	3.60	4.72	3.36	3.89			
18	3.75	4.81	3.70	4.09			
23	4.02	4.87	3.76	4.22			
28	3.78	4.76	3.68	4.07			
K (Levels)							
0	3.52	4.68	3.53	3.91			
32	3.80	4.79	3.62	4.07			
42	4.02	4.87	3.76	4.22			
52	3.85	4.79	3.50	4.05			
S (Levels)							
0	3.46	4.48	3.64	3.86			
9	3.85	4.65	3.43	3.98			
12	4.02	4.87	3.76	4.22			
15	3.81	4.57	3.40	3.93			

Table 19. H	Effects of different levels	of fertilizer nutrients	on the yield of T	Aman rice in	Boro-T.Aman
	cropping pattern at Kend	ua MLT site, Kishor	eganj, 2000-2002		

Location :	Syedpur FSRD site, Rangpur
Year of establishment:	1999-2000 to 2001-02

Average of three years data showed that in Boro rice, grain yield increased markedly with the increase of nitrogen up to 110 kg/ha of N and after that level yield decline. As the soil was deficit in N and therefore response of added nitrogen was evident in the grain yield of Boro rice. Similarly, in case of P a sharp and positive response was evident and grain yield increased up to the application of 26 kg/ha of P. However, regarding K and S the response was not so evident but yield increased slowly up to 48 and 3 kg/ha of K and S, respectively.

T.Aman

In T.Aman rice, almost similar trend like Boro rice was found. Grain yield increased markedly with the addition of N and highest yield was obtained from the application of 90 kg/ha of N. Similarly, a positive response to P and K was found. Grain yield increased rapidly up to 15 and 28 kg/ha of P and K. After that the rate of increment was slow. Yield increased up to the application of 20 and 36 kg/ha of P and K, respectively. But in case of S the response was not very sharp but yield increased slowly up to 3 kg/ha of S.

Cron	Agronomically optimum dose				Economically optimum dose			
Стор	Ν	Р	K	S	N	Р	K	S
Boro	132	35	48	3	-	-	-	-
T.Aman	99	23	40	4	-	-	-	-

Figure 26. Response of Boro rice to NPKS grown in Boro-T.Aman cropping pattern at Syedpur during 2000 to 2002

Figure 27. Response of T.Aman rice to NPKS grown in Boro-T.Aman cropping pattern at Syedpur during 2000 to 2002

Fertilizer levels		Grain yield (t/ha)					
(kg/ha)	2000	2001	2002	Mean			
N (Levels)							
0	2.95c	2.81c	2.77c	2.84			
80	5.68b	5.76b	5.51b	5.65			
110	6.39a	6.22a	6.05a	6.22			
150	6.23a	6.07a	5.86a	6.05			
P (Levels)							
0	4.47c	4.31c	4.18c	4.32			
18	5.78b	5.49b	5.29b	5.52			
26	6.39a	6.22a	6.05a	6.22			
37	6.24ab	6.00a	5.88a	6.04			
K (Levels)							
0	5.28b	5.17b	5.02b	5.16			
35	6.10a	6.01a	5.86a	5.99			
48	6.39a	6.22a	6.05a	6.22			
66	6.25a	6.10a	5.90a	6.08			
S (Levels)							
0	6.02a	5.89a	5.78a	5.90			
2	6.28a	6.15a	6.02a	6.15			
3	6.39a	6.22a	6.05a	6.22			
5	6.32a	6.12a	5.98a	6.14			

Table 20. Effects of different levels of fertilizer nutrients on the yield of Boro rice in Boro-T.Aman cropping pattern at Syedpur FSRD site, Rangpur, 1999-2000 to 2001-02

Table 21. Effects of different levels of fertilizer nutrients on the yield of T.Aman rice in Boro-T.Aman cropping pattern at Syedpur FSRD site, Rangpur, 1999-2000 to 2001-02

Fertilizer	Grain yield (t/ha)					
levels (kg/ha)	2000	2001	2002	Mean		
N (Levels)						
0	2.16c	2.25c	2.20c	2.20		
70	4.82b	5.01b	4.91b	4.91		
90	5.32a	5.53a	5.46a	5.44		
117	5.26a	5.43a	5.37a	5.35		
P (Levels)						
0	3.86b	3.96b	3.77b	3.86		
15	5.10a	5.24a	5.19a	5.18		
20	5.32a	5.53a	5.46a	5.44		
26	5.26a	5.46a	5.38a	5.37		
K (Levels)						
0	4.08b	4.23b	4.10b	4.14		
28	5.23a	5.37a	5.33a	5.31		
36	5.32a	5.53a	5.46a	5.44		
47	5.28a	5.50a	5.43a	5.40		
S (Levels)						
0	4.55b	4.68b	4.54b	4.59		
2	5.20a	5.35a	5.22a	5.26		
3	5.32a	5.53a	5.46a	5.44		
5	5.25a	5.42a	5.34a	5.34		

Location :	Polashbari, Rangpur
Year of establishment:	1999-2000 to 2001-02

From the Mean data it was observed that in Boro rice, grain yield increased markedly with the increase of nitrogen up to 100 kg N/ha and after that level the rate of increment was slow. Yield increased up to the application of 140 kg/ha of N and thereafter started to reduce. In case of P and K a slow but positive response was found and the yield increased up to the application of 24 and 79 kg kg/ha of P and K, respectively. A positive response to sulphur was also observed to some extent and grain yield increased up to 19 kg/ha of S.

T.Aman

In T.Aman rice, almost similar trend like Boro rice was found. Grain yield of T.Aman rice increased sharply up to the application of 90 kg/ha of N and then slowly increased up to 117 kg/ha. After that level yield was started to decrease. Response of T.Aman rice to PKS was also observed to some extent. Yield increased slowly up to the application of 20, 60 and 15 kg/ha of PKS, respectively.

Cror	Agronomically optimum dose				Economically optimum dose			
Crop	Ν	Р	K	S	N	Р	K	S
Boro	113	28	84	23	-	-	-	-
T.Aman	113	17	52	16	-	-	-	-

Figure 27. Response of Boro rice to NPKS grown in Boro-T.Aman cropping pattern at MLT site, Polashbari during 2000 to 2002

Figure 28. Response of T.Aman rice to NPKS grown in Boro-T.Aman cropping pattern at MLT site, Polashbari during 2000 to 2002

Table 22.	Effects c	of different	levels of	fertilizer	nutrients	on the	yield o	f Boro	rice in	Boro-	T.Aman
	croppin	g pattern at	t Polashba	ari, Rang	pur, 1999-	-2000 t	o 2001-	-02			

Fertilizer levels	Grain yield (t/ha)					
(kg/ha)	2000	2001	2002	Mean		
N (Levels)			•			
0	3.12c	3.16c	3.36c	3.21		
100	6.17b	6.05b	6.12b	6.11		
140	6.63a	6.69a	6.75a	6.69		
196	6.30ab	6.19ab	6.21ab	6.23		
P (Levels)						
0	4.30c	4.37c	4.43c	4.37		
17	5.74b	5.75b	5.84b	5.78		
24	6.63a	6.69a	6.75a	6.69		
34	6.09a	6.20a	6.20ab	6.16		
K (Levels)						
0	4.31c	4.42c	4.54c	4.42		
57	6.06b	6.10b	6.19b	6.12		
79	6.63a	6.69a	6.75a	6.69		
109	6.15b	6.23ab	6.32ab	6.23		
S (Levels)						
0	5.28c	5.34c	5.42c	5.35		
14	6.10b	6.14b	6.21b	6.15		
19	6.63a	6.69a	6.75a	6.69		
25	6.30ab	6.40ab	6.49ab	6.40		

Fertilizer levels	Grain yield (t/ha)					
(kg/ha)	2000	2001	2002	Mean		
N (Levels)		•				
0	2.25c	2.15c	2.28c	2.23		
90	5.00b	4.71b	4.77b	4.83		
117	5.46a	5.19a	5.33a	5.33		
152	5.29a	5.02a	5.13ab	5.15		
P (Levels)						
0	3.95b	3.69b	3.92c	3.85		
15	5.27a	4.96a	5.16ab	5.13		
20	5.46a	5.19a	5.33a	5.33		
26	5.02a	4.78a	4.82b	4.87		
K (Levels)						
0	4.64b	4.39b	4.56b	4.53		
46	5.36a	5.05a	5.18ab	5.20		
60	5.46a	5.19a	5.33a	5.33		
78	5.07ab	4.84ab	4.94ab	4.95		
S (Levels)						
0	4.72b	4.44b	4.52b	4.56		
12	5.21a	4.96a	5.11a	5.09		
15	5.46a	5.19a	5.33a	5.33		
20	5.28a	4.98a	5.15a	5.14		

Table 23.	Effects of different levels of fertilizer nutrients on the yield of T.Aman rice in Boro-T.Aman
	cropping pattern at Polashbari, Rangpur, 1999-2000 to 2001-02

Location :	Nilphamari, Rangpur
Year of establishment:	1999-2000 to 2001-02

From the Mean data it was observed that in Boro rice, grain yield increased sharply with the increase of nitrogen up to 100 kg /ha of N and after that level the rate of increment was slow. Yield increased up to the application of 140 kg/ha of N and thereafter started to reduce. In case of P and S a slow but positive response was found and the yield increased up to the application of 14 and 68 kg kg/ha of P and K, respectively. A positive response to sulphur was also observed to some extent and grain yield increased up to 14 kg/ha of S.

T.Aman

In T.Aman rice, almost similar trend like Boro rice was found. Grain yield of T.Aman rice increased sharply up to the application of 90 kg/ha of N and then slowly increased up to 117 kg/ha. After that level yield was started to decrease. Response of T.Aman rice to PKS was also observed to some extent. Yield increased slowly up to the application of 10, 52 and 10 kg/ha of PKS, respectively.

Crear	Agronomically optimum dose				Economically optimum dose			
Сгор	Ν	Р	K	S	N	Р	K	S
Boro	208	18	78	17	-	-	-	-
T.Aman	122	9	38	8	-	-	-	-

Figure 29. Response of Boro rice to NPKS grown in Boro-T.Aman cropping pattern at MLT site, Nilphamari during 2000 to 2002

Figure 30. Response of T.Aman rice to NPKS grown in Boro-T.Aman cropping pattern at MLT site, Nilphamari during 2000 to 2002

Fertilizer levels	Grain yield (t/ha)					
(kg/ha)	2000	2001	2002	Mean		
N (Levels)						
0	3.20c	3.31c	3.26c	3.26		
100	6.10b	6.15b	6.03b	6.09		
140	6.52a	6.72a	6.65a	6.63		
196	6.40a	6.61a	6.50a	6.50		
P (Levels)						
0	5.28b	5.43b	5.37b	5.36		
10	5.98a	6.20a	6.12a	6.10		
14	6.52a	6.72a	6.65a	6.63		
20	6.32a	6.50a	6.46a	6.43		
K (Levels)						
0	4.41c	4.70c	4.61c	4.57		
49	5.90b	6.17b	6.08b	6.05		
68	6.52a	6.72a	6.65a	6.63		
94	6.38ab	6.53ab	6.46ab	6.46		
S (Levels)						
0	5.24b	5.52b	5.39b	5.38		
10	6.21a	6.33a	6.25a	6.26		
14	6.52a	6.72a	6.65a	6.63		
20	6.39a	6.54a	6.42a	6.45		

Table 24. Effects of different levels of fertilizer nutrients on the yield of Boro rice in Boro-T.Aman cropping pattern at Nilphamari, Rangpur, 1999-2000 to 2001-02

Table 25. Effects of different levels of fertilizer nutrients on the yield of T.Aman rice in Boro-T.Aman cropping pattern at Nilphamari, Rangpur, 1999-2000 to 2001-02

Fertilizer levels	Grain yield (t/ha)					
(kg/ha)	2000	2001	2002	Mean		
N (Levels)						
0	2.18c	2.27c	2.11c	2.19		
90	5.06b	5.16b	4.84b	5.02		
117	5.49a	5.70a	5.45a	5.55		
152	5.32a	5.52a	5.39a	5.41		
P (Levels)						
0	4.28b	4.43b	4.23b	4.31		
8	5.38a	5.57a	5.26a	5.40		
10	5.49a	5.70a	5.45a	5.55		
13	5.16a	5.31a	5.13a	5.20		
K (Levels)						
0	4.78c	4.93b	4.78b	4.83		
40	5.31ab	5.51a	5.24a	5.35		
52	5.49a	5.70a	5.45a	5.55		
68	5.11bc	5.29ab	5.08ab	5.16		
S (Levels)						
0	4.86b	4.99b	4.84b	4.90		
8	5.52a	5.77a	5.48a	5.59		
10	5.49a	5.70a	5.45a	5.55		
13	5.29	5.46a	5.19ab	5.31		

A positive response of Boro rice was noticed to NPKS nutrients. Grain yield was increased with the increase of N levels up to 140 kg/ha of N and after that level started to decrease. Similarly, in case of P, K and S and yield increased up to the application of 35 kg/ha, 20 kg/ha and 20 kg/ha of P, K and S, respectively.

T.Aman

Similar trend was found like Boro rice. Grain yield increased with the increase of N and the highest yield was obtained from 95 kg/ha of N. In case of P, K and S a positive response was also observed and grain yield increased up to the application of 20 kg/ha, 15 kg/ha and 15 kg/ha of P, K and S, respectively. A response curve was drawn from the yield data and a quadratic type of relationship was found.

Figure 31. Response of Boro rice to NPKS grown in Boro-T.Aman cropping pattern at MLT site, Kolaroa, Khulna during 2000-01

Figure 32. Response of T.Aman rice to NPKS grown in Boro-T.Aman cropping pattern at MLT site, Kolaroa, Khulna during 2001-02

Table 26.	Effects of different	levels of f	fertilizer	nutrients	on the	yield of	crops	Boro-T.A	Aman	cropping
	pattern at Kolaroa I	MLT site,	Khulna,	2001-02						

Nutrient le	vels (kg/ha)	Grain yield(t/ha)			
Boro	T.Aman	Boro	T.Aman		
N levels					
0	0	3.00	3.21		
100	65	4.51	4.70		
140	95	5.75	5.25		
195	130	4.80	4.91		
P levels					
0	0	4.70	4.67		
25	15	5.51	5.15		
35	20	5.75	5.25		
45	30	5.40	5.10		
K levels					
0	0	5.11	4.85		
20	15	5.92	5.18		
30	20	5.75	5.25		
40	30	5.30	5.00		
S levels					
0	0	4.92	4.71		
10	10	5.51	5.00		
20	15	5.75	5.25		
30	20	5.52	5.07		

Location	:	Feni, Noakhali
Year of establishment	:	2001-02

A positive response of Boro rice was noticed to N. Grain yield was increased with the increase of N levels sharply up to 130 kg/ha of N and after that level started to decrease. Similarly, in case of P, K and S a positive response was found to some extent. Grain yield increased appreciably up to the application of 30 kg/ha, 80 kg/ha and 20 kg/ha of P, K and S, respectively.

T.Aman

Similar trend was found like Boro rice. Grain yield increased with the increase of N and the highest yield was obtained from 120 kg/ha of N. However, the rate of increment was higher up to 90 kg/ha. In case of P, K and S a positive response was also observed and grain yield increased appreciably up to the application of 24 kg/ha, 60 kg/ha and 16 kg/ha of P, K and S, respectively. A response curve was drawn from the yield data and a quadratic type of relationship was found.

Figure 33. Response of Boro rice to NPKS grown in Boro-T.Aman cropping pattern at MLT site, Dagonbhuiyan, Feni, 2002

Figure 34. Response of T.Aman rice to NPKS grown in Boro-T.Aman cropping pattern at MLT site, Dagonbhuiyan, Feni, 2002

Nutrient l	evels (kg/ha)	Gra	ain yield
Boro	T.Aman	Boro (t/ha)	T.Aman (t/ha)
N levels			
0	0	3.97	3.67
130	90	5.48	5.45
180	120	5.17	5.57
230	150	4.62	4.85
P levels			
0	0	4.59	4.60
30	24	5.10	5.28
50	30	5.17	5.57
70	36	5.05	5.45
K levels			
0	0	4.74	4.77
80	60	5.09	5.44
120	80	5.17	5.57
160	100	5.01	5.43
S levels			
0	0	4.97	5.17
20	12	5.23	5.34
30	16	5.17	5.57
40	20	5.13	5.38

Table 27. Effects of different levels of fertilizer nutrients on the yield of crops Boro-T.Aman cropping pattern at Feni, Noakhali, 2001-02

Location	:	Hathazari, Chittagong
Year of establishment	:	1999-2000 to 2001-02

Average of three years data showed that Boro rice responded positively to different added nutrients. Grain yield increased markedly up to 100 kg/ha of N and then the rate of increment was not very sharp. However, yield increased up to 140 kg/ha. Similarly, in case of P, K and S a positive response was found and yield increased sharply up to 25, 69 and 13 kg/ha of P, K and S, respectively. For P and k the yield increased very slowly up to 36 and 97 kg/ha of P and K, respectively.

T.Aman

Similar trend was found in T.Aman rice like Boro rice. Grain yield increased with the increase of N and the highest yield was obtained from 93 kg/ha of N. However, the rate of increment was higher up to 68 kg/ha. In case of P, K and S a positive response was also observed and grain yield increased appreciably up to the application of 18 kg/ha, 49 kg/ha and 8 kg/ha of P, K and S, respectively. But the trend was increasing up to 22, 62 and 10 kg/ha of P, K and S, respectively.

Cron	Agronomically optimum dose				Economically optimum dose			
Сгор	Ν	Р	K	S	N	Р	K	S
Boro	148	34	113	21	-	-	-	-
T.Aman	84	24	68	13	-	6	39	12

Figure 35. Response of Boro rice to NPKS grown in Boro-T.Aman cropping pattern at MLT site, Hathazari, Chittagong 2000 to 2002

Figure 36. Response of T.Aman rice to NPKS grown in Boro-T.Aman cropping pattern at MLT site, Hathazari, Chittagong 2000 to 2002

Table 28.	Effects of different	levels of fertilize	r nutrients of	n the yield o	of crops	Boro-T.Aman	cropping
	pattern at Hathazar	i, Chittagong duri	ing 1999-200	00 to 2001-0	2 (Avg.	of 3 years)	

Nutrient lev	vels (kg/ha)	Grain	n yield
Boro	T.Aman	Boro (t/ha)	T.Aman (t/ha)
N levels			
0	0	3.18	3.02
100	68	4.96	4.51
140	93	5.17	4.74
196	130	4.99	4.58
P levels			
0	0	3.99	3.78
25	18	5.14	4.55
36	22	5.17	4.74
50	31	5.03	4.61
K levels			
0	0	4.03	3.82
69	49	5.02	4.65
97	62	5.17	4.74
136	83	4.99	4.67
S levels			
0	0	4.11	3.96
13	8	5.22	4.57
18	10	5.17	4.74
25	14	5.12	4.71

Location	:	Ishan Gopalpur, Faridpur
Year of establishment	:	2001-02

Grain yield increased up to 90 kg/ha of N and thereafter tended to decrease. Similarly, in case of P and S a positive response was found and yield increased up to 24 and 16 kg/ha of P and S, respectively.

T.Aman

Similar trend was found in T.Aman rice like Boro rice. Grain yield increased with the increase of N up to 60 kg/ha. In case of P and S a positive response was also observed and grain yield increased up to the application of 16 kg/ha and 12 kg/ha of P and S, respectively.

Figure 37. Response of Boro rice to NPKS grown in Boro-T.Aman rice cropping pattern at FSRD site, Ishan Gopalpur, Faridpur during 2001-02

Figure 38. Response of T.Aman rice to NPS grown in Boro-T.Aman rice cropping pattern at FSRD site, Ishan Gopalpur, Faridpur during 2001-02

Location	:	Goyeshpur, Pabna
Cropping pattern	:	Wheat - T.Aman
Year of establishment	:	1999-2000 to 2001-02

Wheat

Average of three years data showed that grain yield of Wheat markedly increased up to 70 kg N/ha but the yield increased slowly up to 130 kg N/ha. Phosphorus, Potassium and Sulphur also showed a very small response towards the yield and yield increase up to 30 kg/ha, 50 kg/ha and 25 kg/ha of P K and S, respectively.

T.Aman

In T.Aman rice, response of N was very distinct and the grain yield increased linearly with the increase of nitrogen level. In case of P, K and S, grain yield increased very slowly up to the application of 20, 20and 10 kg/ha of P, K and S, respectively. However, the overall response of T.Aman rice to P, K and S was not very clear.

Figure 39. Response of Wheat to NPKS grown in Wheat-T.Aman rice cropping pattern at FSRD site, Goyeshpur, Pabna during 2000 to 2002

Figure 40. Response of T.Aman rice to NPKS grown in Wheat-T.Aman rice cropping pattern at FSRD site, Goyeshpur, Pabna during 2000 to 2002

Fertilizer levels		Grain yi	ield (t/ha)	
(kg/ha)	1999-2000	2000-2001	2001-2002	Mean
N (Levels)				
0	2.34	1.58	2.15	2.02
70	2.35	2.47	2.88	2.90
100	2.96	2.93	2.96	2.95
130	3.08	2.61	3.15	2.95
P levels				
0	2.35	2.39	2.20	2.31
20	2.99	2.71	2.84	2.85
30	2.96	2.93	2.96	2.95
40	3.03	2.76	2.98	2.92
K Levels2.40				
0	2.48	2.35	2.08	2.30
30	2.95	2.61	2.82	2.79
50	2.96	2.93	2.96	2.95
70	2.99	2.82	2.92	2.91
S Levels				
0	2.55	2.44	2.33	2.44
15	3.00	2.66	2.84	2.83
25	2.99	2.93	2.96	2.95
35	3.39	2.69	2.94	3.01

Table 29. Effects of different levels of fertilizer nutrients on the yield of Wheat in Wheat-T.Aman cropping pattern at, Goyeshpur, Pabna during 1999-2000 to 2001-02

Table 30. Effects of different levels of fertilizer nutrients on the yield of T.Aman rice in Wheat-
T.Aman cropping pattern at Goyeshpur, Pabna during 1999-2000 to 2001-02

Fertilizer levels		Grain yi	eld (t/ha)	
(kg/ha)	1999-2000	2000-2001	2001-2002	Mean
N (Levels)				
0	3.21	2.35	2.95	2.84
56	4.05	3.70	3.79	3.85
80	4.38	3.99	4.38	4.25
104	4.69	4.55	4.04	4.43
P (Levels)				
0	3.97	3.54	3.94	3.82
15	4.19	3.70	3.95	3.95
18	4.38	3.99	4.38	4.25
21	4.38	4.60	3.54	4.17
K (Levels)				
0	4.39	3.44	3.75	3.86
15	4.34	3.67	3.93	3.98
20	4.38	3.99	4.34	4.25
25	3.55	3.66	3.73	3.65
S (Levels)				
0	4.45	3.63	3.58	3.89
10	4.67	3.95	4.06	4.23
15	4.38	3.99	4.34	4.25
20	4.44	3.99	3.79	4.20

Wheat

Average of three years data showed that grain yield of Wheat markedly increased up to 100 kg N/ha and then started to reduce. Phosphorus, Potassium and Sulphur also showed a response towards the yield to some extent. Grain yield increased up to the application of 26 kg, 83 kg and 30 kg/ha of P, K and S respectively.

T.Aman

In T.Aman rice, response of N was very distinct up to 100 kg N/ha. After that level tended to reduce. Phosphorus, Potassium and Sulphur also showed some response towards the yield and yield increase up to 18 kg, 20 kg and 9 kg/ha of P, K and S respectively.

Initially the soil was deficient in N, P and S but the response was very evident in case of N for both the crops. However, incase of P and S the response was not very distinct.

From the average data a response curve was drawn and a quadratic relationship was observed. From the response curve the optimum doses of the nutrients for different crops were calculated.

Crow	Agronomically optimum dose			Economically optimum dos			dose	
Стор	N	Р	K	S	Ν	Р	K	S
Wheat	93	25	79	35	90	24	72	23
T.Aman	81	17	21	10	79	16	17	9

Figure 41. Response of Wheat to NPKS grown in Wheat-T.Aman cropping pattern at FSRD site, Chabbishnagor, Rajshahi during 1999-2002

Figure 42. Response of T.Aman to NPKS grown in Wheat-T.Aman cropping pattern at FSRD site, Chabbishnagor, Rajshahi during 1999-2002

Table 31. Effects of different levels of fertilizer nutrients on the yield of Wheat in Wheat -T.Aman cropping pattern at Barind, Rajshahi during 1999-2000 to 2001-02

Fertilizer levels		Grain yie	eld (t/ha)	
(kg/ha)	1999-2000	2000-2001	2001-2002	Mean
N (Levels)				
0	1.18	1.99	1.12	1.43
50	2.84	3.20	1.81	2.63
100	3.55	3.86	2.85	3.42
150	3.54	3.85	2.35	3.24
P levels				
0	2.83	2.94	1.84	2.53
13	3.16	3.58	2.16	2.96
26	3.55	3.86	2.85	3.42
39	3.28	3.69	1.95	2.97
K Levels				
0	3.08	3.08	2.11	2.95
42	3.35	3.59	2.31	3.08
83	3.55	3.86	2.85	3.42
125	3.61	3.49	2.22	3.10
S Levels				
0	3.27	3.29	2.11	2.89
15	3.47	3.49	2.45	3.13
30	3.55	3.86	2.85	3.42
45	3.61	3.69	2.65	3.31

Fertilizer levels		Grain yi	ield (t/ha)	
(kg/ha)	1999-2000	2000-2001	2001-2002	Mean
N (Levels)			· · ·	
0	2.38	2.63	2.05	2.52
70	3.34	3.74	3.98	3.68
100	3.93	3.94	4.20	4.02
130	3.49	3.83	3.57	3.63
P levels				
0	3.07	3.73	3.15	3.31
15	3.43	4.26	3.89	3.86
18	3.93	3.94	4.20	4.02
23	3.47	3.97	4.00	3.81
K Levels				
0	3.07	3.66	3.05	3.26
15	3.29	3.85	3.97	3.70
20	3.93	3.94	4.20	4.02
26	3.46	3.87	4.00	3.77
S Levels				
0	3.18	3.63	3.08	3.29
7	3.49	4.08	3.90	3.82
9	3.93	3.94	4.20	4.02
12	3.51	3.63	4.00	3.71

Table 32. Effects of different levels of fertilizer nutrients on the yield of T.Aman rice in Wheat-T.Aman cropping pattern at Barind, Rajshahi during 1999-2000 to 2001-02

Cropping pattern	:	Chilli-T.Aman rice
Location	:	Lebukhali, Patuakhali
Year of establishment	:	2001-02

Chilli

A positive response of Chilli to different nutrients was observed. Fruit yield increased with the increase of nitrogen up to 110 kg/ha of N and then tended to decrease. Similarly, P, K and S also showed some response towards the yield and yield increased with the application of 60 kg/ha and 40 kg/ha of P and K, respectively.

T.Aman

Grain yield increased with the increase of nitrogen up to 60 kg/ha and after that level started to decrease. P and K also showed some response towards the yield. Grain yield increased up to the application of 20 kg/ha and 20 kg/ha of P and K, respectively.

Cron	Agroi	nomically	optimun	n dose	Econ	omically	optimum	dose
Сгор	N	Р	K	S	Ν	Р	K	S
Chilli	130	64	43	-	125	60	40	-
T.Aman	60	19	19	-	57	18	17	-

Figure 43. Response of Chilli to NPK grown in Chilli - T.Aman cropping pattern at FSRD site, Lebukhali, Patuakhali

Figure 44. Response of T.Aman to NPK grown in Chilli - T.Aman cropping pattern at FSRD site, Lebukhali, Patuakhali

Cropping pattern	:	Groundnut-T.Aman
Location	:	Atkapalia, Noakhali
Year of establishment	:	2001-02

Groundnut

Response of nitrogen towards the nut yield of groundnut was not evident. As groundnut is a leguminous crop therefore, response to N was not found. However a very slowly increasing trend was found up to the highest level of added nitrogen. Similarly in case of P and K no appreciable yield increased was observed due to the addition of nutrients. Yield increased very slowly up to 24 and 20 kg/ha of P and K, respectively.

T.Aman

Response of T.Aman rice to N was observed to some extent and grain yield was increased appreciably up to the application of 65 kg/ha of N. Response of T.Aman rice to P and K was not evident. However grain yield increased very slowly up to positive and yield increased up to 12 and 30 kg/ha of P and K, respectively.

Figure 45. Response of Groundnut to NPK grown in Groundnut-T.Aman cropping pattern at Atkapalia, Noakhali, 2001-02

Figure 46. Response of T.Aman rice to NPK grown in Groundnut-T.Aman cropping pattern at Atkapalia, Noakhali, 2001-02

Nutrient levels (kg/ha)		Grain yield (t/ha)			
Groundnut	T.Aman	Groundnut	T.Aman		
N levels					
0	0	2.20	3.60		
20	65	2.45	3.97		
30	90	2.46	4.08		
40	115	2.55	4.09		
P levels					
0	0	2.23	4.18		
30	12	2.31	4.43		
40	24	2.46	4.08		
50	36	2.42	3.96		
K levels					
0	0	2.25	3.70		
25	20	2.47	3.89		
35	30	2.46	4.08		
45	40	2.22	4.10		

Table 33. Effects of different levels of fertilizer nutrients on the yield crops in Groundnut-T.Aman cropping pattern at Atkapalia, Noakhali during 2001-02

Location	:	Laxmipur, Noakhali
Year of establishment	:	1999-2000 to 2001-02

Groundnut

Average of three years data showed that response of nitrogen towards the nut yield of groundnut was found to some extent. Nut yield increased up to the application of 30 kg/ha of N. Similarly in case of P and K response towards the yield was observed and nut yield increased up to 40 and 10 kg/ha of P and K, respectively.

T.Aman

Response of T.Aman rice to N was observed to some extent and grain yield was increased appreciably up to the application of 78 kg/ha of N. Response of T.Aman rice to P and K was also found to some extent. Grain yield increased slowly up to 31 and 27 kg/ha of P and K, respectively.

Cron	Agro	nomically	/ optimun	n dose	Economically optimum dose			
Стор	Ν	Р	K	S	Ν	Р	K	S
Groundnut	25	-	11	-	25	-	11	-
T.Aman	79	32	23	-	-	13	18	-

Figure 47. Response of Groundnut to NPK grown in Groundnut-T.Aman cropping pattern at MLT site, Laxmipur 1999-00 to 2001-02 (Average 3 years)

Figure 48. Response of T.Aman to NPK grown in Groundnut-T.Aman cropping pattern at MLT site, Laxmipur from 1999-00 to 2001-02(Average 3 years)

	1 (1 /1)	C : : 11(4/1)			
Nutrient le	vels (kg/ha)	Grain yield (t/ha)			
Groundnut	T.Aman	Groundnut	T.Aman		
N levels					
0	0	2.26	4.01		
20	60	2.37	5.02		
30	78	2.70	5.26		
40	101	2.35	4.92		
P levels					
0	0	1.95	3.49		
30	24	2.14	4.88		
40	31	2.70	5.26		
50	40	2.64	4.92		
K levels					
0	0	2.15	4.51		
10	21	2.72	4.95		
15	27	2.70	5.26		
20	35	2.40	4.87		

Table 34. Effects of different levels of fertilizer nutrients on the yield crops in Groundnut-T.Aman cropping pattern at Laxmipur, Noakhali during 1999-2000 to 2001-02 (Avg. of 3 years)

Cropping pattern	:	Onion-B.Aman
Location	:	Baliakandi, Faridpur
Year of establishment	:	2002-03

Onion

Bulb yield of onion increased with the increase of N and the highest yield was recorded from 100 kg N/ha. After that level bulb yield tended to decrease. Almost similar trend was found in case of P, K & S and the yield increased up to 80 kg 50 kg and 30 kg/ha of P, K and S respectively. From the data a response curve was drawn and relationship is quadratic. From the response curve optimum dose of onion was find out.

From the response curve the optimum doses of the nutrients for Onion was calculated.

Figure 49. Response of onion to NPKS grown in Onion-B.Aman cropping pattern at Baliakandi, Rajbari during 2002-03
Cropping pattern	:	T.Aus- T.Aman
Location	:	Jhalokati, Barisal
Year of establishment	:	2002

T. Aus rice

Grain yield of T.Aus rice increased sharply up to 60 kg/ha of N. However, the trend was increasing but slows up to 80 kg/ha and after that level tended to decrease. Similar trend was observed in case of P and yield increased up to 20 kg/ha of P.

T.Aman rice

Grain yield increased linearly with the increase of N and the highest yield was recorded from the highest level of N (102 kg/ha). However the rate of increment was very sharp up to 60 kg/ha of N. Similar trend was found in case of phosphorus also.

From the response curve optimum level of different nutrients was calculated.

Figure 50. Response of T.Aus rice to NP grown in T.Aus-T.Aman cropping pattern at Jhalokati, Barisal, 2002

Figure 51. Response of T.Aman rice to NP grown in T.Aus-T.Aman cropping pattern at Jhalokati, Barisal, 2002

Nutrient le	evels (kg/ha)	Grain y	ield (t/ha)
T.Aus	T.Aman	T.Aus	T.Aman
N levels			·
0	0	2.45	3.26
60	60	3.13	4.17
80	82	3.24	4.20
100	102	3.03	4.30
P levels			
0	0	2.63	3.53
15	14	3.12	4.16
20	17	3.24	4.20
25	22	3.15	4.30

Table	35.	Effects	of	different	levels	of	fertilizer	nutrients	on	the	yield	of	crops	in	T.Aus-	T.Aman
		croppir	ng p	pattern at	Jhaloka	ati,	Barisal, 2	2002								

Cropping pattern	:	T.Aus- T.Aman
Location	:	Golapganj FSRD site & Moulvibazar MLT site, Sylhet
Year of establishment	:	2000-2002

T. Aus rice

Results of three years studies indicated that at two locations (Golapganj, Sylhet and Moulvibazar) grain yield of T.Aus rice increased up to 95 kg N/ha at Golapganj and up to 90 kg N/ha at Moulvibazar and there after the yield reduced. Almost similar trend was observed in case of P, K, and S and grain yield increased up to the application 22, 60 and 6 kg/ha and 15, 35 and 6 kg/ha of P,K, and S, at Golapganj FSRD site and Moulvibazar MLT site, respectively.

T.Aman rice

Grain yield increased with the increase of N levels up to 95 kg N/ha at Golapganj and 90 kg N/ha at Moulvibazar. Similarly the response was found in P, K and S up to 11, 60 and 3 kg/ha and 7, 35 and 3 kg/ha of P, K and S at Golapganj FSRD site and Moulvibazar MLT site, respectively.

From the response curve both agronomically and economically optimum level of different nutrients was calculated and it was observed that the agronomically optimum level is little higher than economically optimum level.

Treatment		20	000	2	001	2002		Mean	
T.Aus	T.Aman	T.Aus	T.Aman	T.Aus	T.Aman	T.Aus	T.Aman	T.Aus	T.Aman
Nitrogen	rate (kg/ha)								
0	0	1.99	2.48	2.71	2.30	2.76	2.84	2.49	2.54
70	70	2.97	3.48	5.19	4.82	4.56	4.65	4.24	4.32
95	95	3.04	3.65	5.56	5.11	4.80	4.91	4.47	4.56
120	120	2.93	3.52	5.13	4.68	4.50	4.60	4.19	4.27
Phosphor	us rate (kg/	ha)							
0	0	2.55	3.06	4.45	3.76	3.90	3.82	3.63	3.55
17	9	2.98	3.58	5.32	4.82	4.63	4.71	4.31	4.37
22	11	3.04	3.65	5.56	5.11	4.80	4.91	4.47	4.56
27	13	2.94	3.53	5.38	4.95	4.64	4.75	4.32	4.41
Potassiun	n rate (kg/h	a)							
0	0	2.42	2.76	5.2	5.08	4.46	4.60	4.03	4.15
40	40	2.86	3.44	5.48	5.14	4.65	4.81	4.33	4.46
55	55	3.04	3.65	5.56	5.11	4.80	4.91	4.47	4.56
70	70	2.92	3.52	5.46	5.14	4.73	4.85	4.37	4.50
Sulphur r	ate (kg/ha)								
0	0	2.71	3.38	4.11	4.30	3.81	4.30	3.54	3.99
4.8	2.4	2.98	3.6	5.38	4.90	4.67	4.76	4.34	4.42
6.4	3.2	3.04	3.65	5.56	5.11	4.80	4.91	4.47	4.56
8	4	2.95	3.59	5.47	5.01	4.70	4.78	4.37	4.46

Table 36. Effect of different level of fertilizer nutrient on the yield of T.Aus-T.Aman-Fallow cropping pattern at FSRD Site, Golapganj, Sylhet during 2000, 2001 and 2002

Table 37. Effect of different level of fertilizer nutrient on the yield of T.Aus-T.Aman-Fallow cropping pattern at MLT Site, Moulvibazar during 2000, 2001and 2002

Trea	tment	2000		2001		2	002	М	Mean	
T.Aus	T.Aman	T.Aus	T.Aman	T.Aus	T.Aman	T.Aus	T.Aman	T.Aus	T.Aman	
Nitrogen	rate (kg/h	a)								
0	0	2.24	2.51	2.60	3.19	2.96	2.97	2.60	2.89	
70	70	3.11	3.51	5.19	5.53	4.74	4.90	4.35	4.65	
90	90	3.28	3.80	5.42	5.68	4.97	5.14	4.56	4.87	
110	110	3.16	3.76	5.24	5.4	4.80	4.97	4.40	4.71	
Phospho	rus rate (kg	g/ha)								
0	0	2.78	3.25	4.22	4.13	4.00	4.00	3.67	3.79	
14	7	3.10	3.62	5.20	5.38	4.86	4.98	4.39	4.66	
17	8.5	3.28	3.8	5.42	5.68	4.97	5.14	4.56	4.87	
20	10	3.18	3.72	5.26	5.4	4.82	4.94	4.42	4.69	
Potassiu	m rate (kg/	ha)								
0	0	2.62	3.12	5.08	5.36	4.68	4.87	4.13	4.45	
30	30	3.12	3.67	5.32	5.61	4.82	5.03	4.42	4.77	
40	40	3.28	3.8	5.42	5.68	4.97	5.14	4.56	4.87	
50	50	3.15	3.75	5.35	5.67	4.86	5.11	4.45	4.84	
Sulphur	rate (kg/ha)								
0	0	2.95	3.58	3.93	4.74	3.93	4.42	3.60	4.25	
3.6	1.8	3.22	3.75	5.24	5.45	4.83	4.99	4.43	4.73	
4.8	2.4	3.28	3.8	5.42	5.68	4.97	5.14	4.56	4.87	
6	3	3.18	3.72	5.34	5.58	4.87	5.04	4.46	4.78	

Figure 52. Response of T.Aus to NPKS grown in T.Aus- T.Aman-Fallow at FSRD site, Golapganj, Sylhet during 2000 to 2002

Figure 53. Response of T.Aman to NPKS grown in T.Aus- T.Aman-Fallow at FSRD site, Golapganj, Sylhet during 2000 to 2002

Figure 54. Response of T.Aus to NPKS grown in T.Aus- T.Aman-Fallow at MLT site, Moulvibazar during 2000 to 2002

Figure 55. Response of T.Aman to NPKS grown in T.Aus- T.Aman-Fallow at MLT site, Moulvibazar during 2000 to 2002

Appendix table 1. Initial soil status of the experimental site

Location with	Land				Total N	K	Р	S	Zn	В
AEZ	type	R/I	pН	O.C (%)	(%)	(m.eq./100g soil)		р	pm	
Muktagacha (9)	MHL	Ι	5.42	2.12	0.18(L)	0.059 (VL)	8.6 (L)	25.0 (Opt.)	-	-
Phulpur (9)	MHL	Ι	5.17	1.38	0.08 (VL)	0.18 (M)	17.0 (M)	11.5 (L)	1.73 (O)	0.22 (L)
Netrakona (9)	MHL	Ι	5.00	1.61	0.08 (VL)	0.30 (H)	4.91 (VL)	8.1 (VL)	1.50 (O)	0.27 (L)
Narikeli (9)	MHL	Ι	5.6-6.15	1.0	0.05 (VL)	0.08 (VL)	8.15 (L)	12.7 (L)	0.67 (L)	1.39 (VH)
Melandah (9)	MHL	Ι	5.2-5.9	0.75-1.38	0.05-0.10 (L)	0.06-0.76 (M)	4.75-11.3 (L)	5.08-10.9 (L)	0.78-5.1 (M)	0.05-0.29 (L)
Sherpur (9)	MHL	Ι	5.0-6.2	0.55-1.31	0.025- 0.101 (L)	0.06-0.15 (VL)	4.2-11.5 (L)	6.6-15.5 (L)	0.28-0.79 (VL)	0.61-2.75 (VH)
Kendua (9)	MHL	Ι	5.62	2.05	0.10 (L)	0.13 (L)	2.26 (VL)	8.56 (VL)	-	-
Kishoreganj	MHL	Ι	5.59	2.83	0.13 (L)	0151 (L)	3.80 (VL)	23.6 (M)	-	-
Lebukhali (13)	MHL	R	5.3	1.44	0.08 (VL)	0.28 (Opt)	4.4 (VL)	33.46(Opt)	0.34(VL)	-
Barind (26)	MHL	Ι	8.48	1.53	0.08 (VL)	0.16 (L)	5.16 (L)	19.5 (M)	0.65 (L)	0.29 (L)
Atkapalia (18)	MHL	R	7.06	1.41	0.03	0.23	5.7	65.2	0.66	-
Laxmipur (18)	MHL	R	6.6	2.12	0.12 (L)	0.19 (M)	1.5 (VL)	31.3 (VH)	0.85 (L)	0.47 (O)
Hathazari (23)	MHL	Ι	5.57	1.52	0.08 (VL)	0.04 (VL)	2.50 (VL)	10.6 (L)	-	-
Norail (11)	MHL	Ι	-	-	0.11 (L)	0.27 (M)	1.88 (VL)	36.0 (H)	2.57 VH)	0.82 (O)
Goyeshpur (11)	MHL	Ι	7.7	2.97	0.15 (L)	0.41 (M)	5.26 (VL)	19.5 (M)	0.65 (O)	0.23 (O)
Baliakandi (12)	MHL	Ι	6.3	-	0.16 (L)	0.44 (VH)	1.84 (VL)	18.5 (M)	-	-
Ishan Gopalpur (12)	MHL	Ι	7.5	-	0.18 (M)	0.42 (VH)	9.03 (L)	18.0 (L)	-	-
Golapganj (20)	MHL	R	5.20	1.70	0.08 (VL)	0.05 (VL)	3.25 (VL)	22.5 (M)	0.73 (L)	0.36 (M)
Moulvibazar (20)	MHL	R	4.74	1.95	0.09 (VL)	0.17 (M)	9.56 (L)	22.3 (M)	3.30 (VH)	0.58 (O)
Kolaroa (11)	MHL	Ι	8.1	1.88	0.09 (L)	0.22 (M)	4.80 (VL)	13.2 (L)	0.51 (L)	-
Syedpur (3)	MHL	Ι	5.4	2.41	0.14 (L)	0.17 (M)	9.1 (L)	33.9 (O)	1.3 (O)	0.24 (L)
Polashbari (3)	MHL	Ι	5.9	1.27	0.08 (VL)	0.09 (L)	10.1 (L)	12.5 (L)	1.10 (M)	0.19 (L)
Nilphamari (3)	MHL	Ι	5.1	1.55	0.09 (VL0	0.12 (L)	16.5 (M)	18.5 (M)	1.24 (M)	0.27 (L)
Jhalokati (13)										
Norail										
Bagherpara										

Appendix table 2. Crop management practices

Site	Cropping	variety Seed rate		Planting time	Harvesting time
	pattern		(kg/ha)	Ath 1 CN	
Muktagacha	Mustard	Tori-/	10	4 th week of Nov	Ist week of Feb
	Boro	BR 28	40	2 nd week of Feb	3 rd week of May
	T.Aman	BRRI Dhan 33	40	4 th week of July	1 st week of Nov
Bagherpara	Mustard	Tori-7	08	3 rd week of Nov	2 nd week of Feb
	Boro	BR 28	40	^{3rd} week of Feb	Last week of May
	T.Aman	BR 11	40	Last week of July	4 th week of Nov
Narikeli	Mustard	Tori-7	07	4 th week of Nov	Last week of Jan
	Boro	BRRI Dhan 28	50	1 st week of Feb	Last week of May
	T.Aman	BRRI Dhan 33	50	4 th week of July	2 nd week of Nov
Melandah	Mustard	Tori-7	07	4 th week of Nov	Last week of Jan
	Boro	BRRI Dhan 28	50	1 st week of Feb	Last week of May
	T.Aman	BRRI Dhan 33	50	4 th week of July	2 nd week of Nov
Sherpur	Wheat	Kanchan	120	2 nd week of Dec.	Last week of March
	Jute	O-9897	8	3 rd week of April	Last week of July
	T.Aman	BRRI Dhan 33	50	Last week of Aug	Last week of Oct.
Lebukhali	Mungbean	Kanti	40	2 nd week of Feb	4 th week of April
	T.Aus	BR 2	40	1st week of May	3 rd week of Aug.
	T.Aman	BR 23	40	Last week of Aug	Last week of Dec
Jhalokati	T.Aus			-	
	T.Aman				
Kishoregonj	Boro	BRRI Dhan 29	40	1 st week of Feb.	Last week of May
0 3	T.Aman	BR 11	40	Last week of July	3 rd week of Nov
				2	
Kendua	Boro	BRRI Dhan 29	40	1 st week of Feb.	Last week of May
	T.Aman	BRRI Dhan 32	40	Last week of July	3 rd week of Nov
Phulpur	Boro	BRRI Dhan 28	40	Last week of Jan.	1 st week of May
1	T.Aman	BRRI Dhan 33	40	Last week of July	Last week of Oct.
Netrakona	Boro	Pajam	40	1 st week of Feb.	2 nd week of May
	T.Aman	BRRI Dhan 33	40	Last week of July	Last week of Oct.
Norail	Boro	BRRI Dhan 28	40	1 st week of Feb.	3 rd week of May
	T.Aman	BR 11	40	3 rd week of July	Last week of Nov
Svedpur	Boro	BRRI Dhan 29	40	1 st week of Feb.	3 rd week of Mav
5 1	T.Aman	BR 11	40	3 rd week of July	Last week of Nov
Polashbari	Boro	BRRI Dhan 29	40	1 st week of Feb.	3 rd week of Mav
	T.Aman	BR 11	40	3 rd week of July	Last week of Nov
Nilphamari	Boro	BRRI Dhan 29	40	1 st week of Feb.	3 rd week of Mav
I	T.Aman	BR 11	40	3 rd week of July	Last week of Nov
Hathazari	Boro	BRRI Dhan 29	40	2 nd week of Jan.	3 rd week of May
11001102011	T.Aman	BRRI Dhan 30	40	Last week of July	3 rd week of Nov
Barind	Wheat	Kanchan	120	2 nd week of Nov	Last week of March
	T.Aman	BRRI Dhan 39	40	3 rd week of July	Last week of Oct.
Atkapalia	G.nut	Dhaka-1	-	1 st week of Jan.	3 rd week of May
1 Innapana	T Aman	BRRI Dhan 32	40	2 nd week of Aug	3 rd week of Nov
Laxminur	G nut	Dhaka-1	-	Last week of Dec	3 rd week of May
Luximpui	T Aman	BRRI Dhan 32	40	Last week of July	3 rd week of Nov
Feni	Boro	BRRI Dhan 29	40	1 st week of Feb	Last week of May
1 0111	T Aman	BR 11	40	Last week of July	3 rd week of Nov
Goveshmur	Wheat	Kanchan	120	1 st week of Dec	4 th week of March
Obyconput	T Aman	RR 11	50	I ast week of July	3 rd week of Nov
Kolaroa	Boro	BRRI Dhan 28	20 70	Last week of Ion	1 st week of Mov
Kulalua	T Amon	DIXIXI DIIAII 20 DD 11	40	Mid Ang	and week of Dec
Golongoni	T And	DR-11 DD 26	40	1st week of June	J WEEK OF DEC.
Golapganj	T Amer	DR 20 DDDI Dhan 22	40	1 week of June	with Aug. Last week of New
Mauluiharan	T And	DKKI Dilah 32	40	1 week of Sept.	Last week of Nov.
wouwibazar	T Amon	DK 20 DDDI Dhan 22	40	1 week of June	Iviid. Aug.
Dolighand	1.Aman	DKKI Dnan 32	40	¹ week of Sept.	Last week of NoV.
	Union Dome	Tanerpuri	-	2^{rd} week of January	Last week of March
Isnan Gopaipur	BORO TAma	DKKI Unan 29	40	5 ⁻² week of Jan.	2^{res} week of May
	1.Aman	BKKI Dhan 32	40	Last week of July	3 rd week of Nov.

EFFECTS OF DIFFERENT LEVELS OF MAGNESIUM ON THE PERFORMANCE OF **DIFFERENT CROPS AT RANGPUR**

Abstract

The experiment was conducted at FSRD site, Syedpur of OFRD, Rangpur during Rabi season of 2002-03. Five different levels of magnesium varied from crop to crop were tested against Potato, Tomato and Maize (hybrid) to find out the optimum and economic dose of Mg for the crops grown in magnesium deficient area of grater Rangpur. Results revealed that a positive response of crops to magnesium was evident. Yield of crops increased significantly with the application of Mg. The highest tuber yield of Potato (32.33 t ha⁻¹) was obtained from 10 kg ha⁻¹ of Mg that was also identical to 15 and 20 kg ha⁻¹ of Mg. The highest fruit yield of Tomato (70.6 t ha⁻¹) was obtained from 16 kg ha⁻¹ of Mg that was also identical to 24 and 32 kg ha⁻¹ of Mg. Similarly, in Maize the highest grain vield (10.8 t/ha) was recorded from 20 kg ha⁻¹ of Mg that was also identical to 10, 30 and 40 kg ha⁻¹ of Mg. Considering yield and economic return 10, 16 and 10 kg/ha of Mg was found optimum for growing Potato, Tomato and Maize (hybrid), respectively for grater Rangpur under AEZ 3.

Introduction

Magnesium is one of the essential secondary nutrient elements for crop production. It is an important constituent of chlorophyll and therefore, essential for photosynthesis. It also promotes uptake and translocation of phosphorus. Generally, magnesium does not need to apply in the soil as its status in soil is optimum. But recently its deficiency was reported in medium highland soil of grater Rangpur under Tista Flood Plain (AEZ 3). Initial soil nutrient status also showed that Mg content of that area is low (0.14 meg/100 g of soil) and below the critical level (0.8 meg/100 g of soil). The deficiency was observed in different crops particularly in rabi crops like Potato, Tomato and other vegetables crops and Maize. Last year at Lalmonirhat Maize was completely damaged due to sever Mg deficiency. Potato, Tomato and Maize is widely grown in Rangpur and area under those crops is expanding over the years. Magnesium recommendation for different crops is not yet available in our country even not mentioned in the national fertilizer recommendation guide (FRG'97). Therefore, it is very important to find out the optimum dose of Mg for different crops for successful crop production. Keeping this view in mind the experiment was undertaken to find out the optimum dose of Mg for Potato, Tomato and Maize (hybrid) for magnesium deficient area of AEZ # 3.

Materials and Methods

The experiment was conducted at FSRD site, Syedpur during Rabi 2002-03 to find out the optimum dose of Mg for Potato, Tomato and Maize (hybrid). Five levels of Mg varied from crop to crop were tested against the crops. The trial was conducted in randomized complete block design with 6 dispersed replications. Initial soil samples were also collected from experimental plots and analyzed in SRDI laboratory, Rajshahi. The results of soil analysis are given in appendix table 1. The unit plot size was 5 m \times 3 m. Details of the crop and fertilizer managements are given in appendix table 4. At maturity crops were harvested and necessary data were collected and analyzed statistically.

Crop	Mg levels (kg/ha)						
Potato	0	5	10	15	20		
Tomato	0	8	16	24	32		
Maize (hybrid)	0	10	20	30	40		

D · 00

Results and Discussion

Crop: Potato

The results presented in table 1 revealed that there was significant difference among the treatments in respect of tuber weight/hill and tuber yield. Significantly the highest tuber yield ($32.33 \text{ t } \text{ha}^{-1}$) was obtained from the plot where 10 kg Mg ha⁻¹ was applied that was also identical to 15 and 20 kg Mg ha⁻¹, respectively. Significantly the lowest yield ($25.33 \text{ t } \text{ha}^{-1}$) was obtained from the treatment where Mg was not applied (control).

Cost and return analysis showed that the highest gross return (Tk. 129320 ha⁻¹), gross margin (Tk. 85631 ha⁻¹) and BCR (2.96) were calculated from the treatment where 10 kg Mg ha⁻¹ was applied. On the other hand the highest MBCR (14.14) and marginal rate of return (1314%) were recorded from the treatment where 5 kg Mg ha⁻¹ was applied.

A response curve was drown with yield data obtained against different levels of Mg. The response was quadratic in nature and from the equation the Mg dose that maximized yield as well as profit was find out and it was 13kg Mg ha⁻¹ and 12 Kg ha⁻¹, respectively.

Table 1. Yield and yield contributing characters of potato as affected by different levels of Mg at Syedpur FSRD site, OFRD, BARI, Rangpur during 2002-03

Levels of Mg (kg ha ⁻¹)	Plant height (cm)	Plant hill ⁻¹ (No.)	Tuber hill ⁻¹ (No.)	Tuber weight hill ⁻¹ (g)	Tuber yield (t ha ⁻¹)
0	78	3.59	10.4	420c	25.33c
5	81	3.62	10.8	479b	29.55b
10	79	3.82	10.9	530a	32.33a
15	79	3.72	10.8	505ab	30.95ab
20	80	3.77	10.5	499ab	30.75ab
CV (%)	3.2	5.8	5.6	5.9	6.2

Means followed by the same letter (s) in a column are not significantly different at 5% level by DMRT

Table 2. Cost and return of potato as affected by different levels of Mg at Syedpur FSRD site, OFRD, BARI, Rangpur during 2002-03

Mg Levels (kg ha ⁻¹)	Gross return (Tk ha ⁻¹)	Variable cost (Tk ha ⁻¹)	Gross margin (Tk ha ⁻¹)	BCR	MBCR	MRR (%)
0	101320	41282	60038	2.45	-	-
5	118200	42476	75602	2.78	14.14	1183
10	129320	43689	85406	2.96	11.63	745
15	123800	45005	78570	2.75	6.04	-477
20	123000	46321	76460	2.66	4.30	-148

Figure 1. Response of Potato to added Magnesium at FSRD site, Syedpur, Rangpur during 2002-03

Crop: Tomato

The results revealed that there was significant difference among the treatments in respect of fruit weight per plant and fruit yield per hectare. Significantly the highest fruit yield (70.59 t ha^{-1}) was obtained from 16 kg Mg ha^{-1} that was statistically identical to 24 and 32 kg Mg ha^{-1} , respectively. Significantly the lowest yield (56.09 t ha^{-1}) was obtained from the treatment where Mg was not applied (control). Almost similar trend was observed in fruit weight/plant. However, Plant height and number of fruits per plant did not differ significantly.

From cost and return analysis it was found that the highest gross return (Tk. 229418 ha⁻¹), gross margin (Tk. 184268 ha⁻¹), BCR (5.08), MBCR (12.22) and marginal rate of return (1426%) were calculated from 16 kg Mg ha⁻¹. From the response curve (Figure 2) the MG levels that maximized yield and profit was find out and it was 22 kg Mg ha⁻¹ and 21 Kg ha⁻¹, respectively.

Table 3. Yield and yield contributing characters of tomato as affected by different levels of Mg at Syedpur FSRD site, OFRD, BARI, Rangpur during 2002-03

Levels of Mg	Plant height (cm)	Fruit Plant ⁻¹	Fruit wt. Plant ⁻¹	Fruit yield
$(kg ha^{-1})$		(No.)	(g.)	(t ha ⁻¹)
0	74	27.5	1.69c	56.09c
8	74	27.7	1.88bc	61.52b
16	76	28.4	2.12a	70.59a
24	75	28.4	2.04a	68.97a
32	76	27.9	1.98ab	66.46a
CV (%)	3.5	8.4	9.3	6.3

Means followed by the same letter (s) in a column are not significantly different at 5% level by DMRT

Table 4. Cost and return of tomato as affected by different levels of Mg at Syedpur FSRD site, OFRD, BARI, Rangpur during 2002-03

Levels of Mg (kg ha ⁻¹)	Gross return (Tk ha ⁻¹)	Variable cost (Tk ha ⁻¹)	Gross margin (Tk ha ⁻¹)	BCR	MBCR	MRR (%)
0	182292	41295	140997	4.41	-	-
8	199940	43218	156722	4.63	9.18	818
16	229418	45150	184268	5.08	12.22	1426
24	224153	47161	176992	4.75	7.14	-362
32	215995	49266	166729	4.38	4.23	-738

Figure 2. Response of Tomato to added Magnesium at FSRD site, Syedpur, Rangpur during 2002-03

Crop: Maize (hybrid)

The results showed that there was significant difference among the treatments in respect of number of grains per cob, 1000 seed weight, grain and straw yield. Significantly the highest grain yield (10.85 t ha^{-1}) was obtained from 20 kg ha^{-1} of Mg that was statistically identical to the treatments where 10, 30 and 40 kg ha^{-1} of Mg were applied, respectively. Significantly the lowest yield (8.85 t ha^{-1}) was obtained from the treatment where Mg was not applied (control). Similar trend was observed in number of grains per cob, 1000 seed weight and straw yield.

From the cost and return analysis it was found that the highest gross margin (Tk/ha) and marginal rate of return was obtained from the treatment where 10 kg Mg ha^{-1} was applied. From the response curve it was also observed that 24 kg ha^{-1} and 13 Kg ha^{-1} of Mg was found optimum for maximum yield and profit, respectively.

Levels of	Plant	Days to	Ear	Cobs/	Grains/	1000	Grain	Straw
Mg	height	maturity	length	plant	$\cosh(n\alpha)$	grain wt	yield	yield
(kg ha^{-1})	(cm)	(Days)	(cm)	(no.)	coo (no.)	(g)	(t/ha)	(t/ha)
0	197	142	21.3	1.50	519b	350b	8.85b	9.92
10	197	145	22.7	1.65	566a	360a	10.77a	11.73a
20	198	145	22.2	1.63	570a	363a	10.85a	11.95a
30	197	144	22.8	1.60	568a	363a	10.69a	11.64a
40	196	144	22.6	1.60	567a	362a	10.45a	11.48a
CV (%)	4.1	3.4	5.5	8.1	5.9	1.8	7.2	7.8

Table 5. Yield and yield contributing characters of hybrid maize as affected by different levels of Mgat Syedpur FSRD site, OFRD, BARI, Rangpur during 2002-03

Means followed by the same letter (s) in a column are not significantly different at 5% level by DMRT.

Table 6. Cost and return analysis of hybrid maize as affected by different levels of Mg at Syedpur FSRD site, OFRD, BARI, Rangpur during 2002-03

Mg Levels	Gross return	Variable cost	Gross margin	MRR
(kg ha^{-1})	$(Tk. ha^{-1})$	$(Tk. ha^{-1})$	$(Tk. ha^{-1})$	(%)
0	75760	0	75760	-
10	92025	2632	89393	618
20	92775	5264	87511	0.28
30	91340	7896	83444	-
40	89340	10528	78812	-

Figure 3. Response of hybrid maize to added Magnesium at FSRD site, Syedpur, Rangpur during 2002-03

SL. Soil Characteristic Status Soil Characteristic SL. Status 1. pН 5.37 P (Micro gram g⁻¹ soil) 38.95 (VH) 6. S (Micro gram g^{-1} soil) Zn (Micro gram g^{-1} soil) 2. OM (%) 2.17 7. 13.12 (L) 3. Mg (m eq/100g soil) 0.82 (M) 8. 0.55 (L) 4. K (m eq/100g soil) 0.42 (H) 9. B (Micro gram g^{-1} soil) 0.29 (L) 5. N (%) 0.11 (L)

Appendix table 1. Initial soil status of the experimental plots of Potato

Appendix table 2. Initial soil status of the experimental plots of Tomato

SL.	Soil Characteristic	Status	SL.	Soil Characteristic	Status
1.	pН	6.22	6.	P (Micro gram g ⁻¹ soil)	53.11 (VH)
2.	OM (%)	1.68	7.	S (Micro gram g^{-1} soil)	14.58 (L)
3.	Mg (m eq/100g soil)	0.46 (L)	8.	Zn (Micro gram g ⁻¹ soil)	0.58 (L)
4.	K (m eq/100g soil)	0.49 (VH)	9.	B (Micro gram g ⁻¹ soil)	0.25 (L)
5.	N (%)	0.11 (L)			

Appendix table 3. Initial soil status of the experimental plots of Maize

SL.	Soil Characteristic	Status	SL.	Soil Characteristic	Status
1.	pН	5.53	6.	P (Micro gram g ⁻¹ soil)	21.00 (M)
2.	OM (%)	1.78	7.	S (Micro gram g^{-1} soil)	9.00 (L)
3.	Mg (m eq/100g soil)	0.95 (M)	8.	Zn (Micro gram g ⁻¹ soil)	1.10 (M)
4.	K (m eq/100g soil)	0.16 (L)	9.	B (Micro gram g^{-1} soil)	0.39 (M)
5.	N (%)	0.08 (VL)		· /	

Appendix table 4. Crop management and fertilization

Crop Management

					H
			1	P	9
			1		a
		1	ļ	L	r
116		ł	2	a	V
110		l a		2	
			1	1	e
]	t	t	S
]	i		t
		1	1		ι
			1	n	1
			ç	σ	n
			2	5	
					g
			t	t	
		•	:		+
		1	1		
			1	m	1
			6	a	m
			,		11
					e
		ť]	Ĺ	1
		(<i>,</i>	2	s
		(6	a	
			5	5	t
		(ť	t	
		,	,		
		ľ			W
			,	W	e
		2	6	3	e
			(3	k
		~	1	r	
		4	1	Δ	
		4			0
			(า	f
				5	1
		(1	t i i i i i i i i i i i i i i i i i i i	
		r			F
		-	1	NT.	-
			L	N	e
			(C	b
				7	
				v	•
		(]		1
		(s
		(6	a	
			S	5	t
		(ť	÷	
			, i		
		1			W
			N N	W	e
		_		-	-
		2	6	3	e
			(8	k
		/	1	r	
			1	x.	
		4			0
			(2	f
				c c	1
		(1	l	
		t			Α
		-	ו	N	n
			1		Р Ч
			(0	r
			,	V	i
					1
					1
		-		`	2
			4	2	2
		4	r	1	n
			ć	1	d
		C			
		*	T	X/	W
		1		* *	**
			6	e	k
		v	6	e	
		1	1	-	
			I	K	
		2			0
		4		h	f
			(J 0	1
			1	t	
		C			А
SFM SFFP	•	· · · ·			4 b
~		1]	U	p
			í	2	r
			· · · ·	-	-
			(5	1

Fertilization

Fertilizer	Applicati
rate	on
(NPKSZn in	(Method
kg/ha)	& time)
Mg: 0-5-10-	In
15-20	Potato,
NPK S7nB·	all PKS
160-15-50-	Mg Zn B
27-1-1.8 +	and $1\backslash 2$
CD @ 7.5	of urea
t/ha	and
	was
	applied
	as basal
	and rest
	half of
	urea was
	side
	dressed
	at 30
	DAP.
Mg: 0-8-16-	All P, S,
24-32	Mg, Zn,
NPKSZnB:	B and
160-15-50-	cowdung
27-1-1.8 +	was
CD @ 5 t/ha	applied as basal
	But N
	and K
	was
	applied
	in 2
	equal
	splits at
	15 and
	35 DAP.
Mg: 0-10-	All PKS
20-30-40	Mg Zn B
NPKSZnB:	and $1/2$
250-45-150-	oI urea
40-3-1.5 +	and
CD @ 5 t/ha	Was
	applied
	as basal
	and rest
	half of
	urea was
	side
	dressed
	in two
	splits at
	4U 200

Fertilizer	Applicati
rate	on
(NPKSZn in	(Method
kg/ha)	& time)
	70 DAP.

Subproject: Verification of Fertilizer Management Practices

EFFECT OF UREA SUPER GRANULE (USG) AS A SOURCE OF NITROGENOUS FERTILIZER ON UPLAND VEGETABLES AND FRUITS

Abstract

The experiment was conducted at Narsinghdi, Tangail, Rangpur and Pabna during 2000-01 to 2002-03 to evaluate the effect of Urea Super Granule (USG) on upland vegetables and fruits crops. Different vegetables crops viz. Cabbage, Cauliflower, Tomato, Potato, Brinjal and fruits crops viz. Papaya were included in the trial. Recommended dose of USG, 10% and 20% less of recommended USG were tested along with recommended dose of prilled Urea and Farmers' practice. At Norshingdi recommended dose of prilled urea in ring placement was included as another treatment. Results revealed that yield of crops increased significantly due to application of USG over prilled urea. In most cases, 10-20% less of N as USG also produced identical yield with recommended dose of prilled urea. But at Norshingdi, recommended dose of USG and recommended dose of prilled urea in ring placement produced higher and identical yield. Placement of fertilizer is more important than source of fertilizer found at Norshingdi. About 10-20% nitrogen could be saved by using USG instead of prilled urea. Regarding economics, the higher returns were also obtained from USG treatments.

Introduction

Nitrogen is the most deficient nutrient element in Bangladesh soil. In general, farmers' of the country apply at least nitrogenous fertilizer to their crops for better yield. There are different types of nitrogenous fertilizers are now available in the market. Recently, Urea super Granule (USG) has become available in the market and used in wetland rice as well as upland crops. It is said that USG is more efficient than prilled urea in supplying N to crops as it is minimize loss by leaching and volatilization. USG is mostly used by farmers in boro rice and it is reported that 20-30% nitrogen could be saved by using USG compared to prilled urea. During the last couple of years farmers' in some parts of the country using USG in upland vegetables and fruit crops like brinjal, cabbage, cauliflower, tomato, papaya and banana. However, there is no recommendation of USG on upland crops are so far available and research findings in this regard are very scanty. Environment in wetland rice is quite different from upland condition and efficiency of USG on upland crops are yet to be ascertained. In this context the experiment was designed with the following objectives-

- i) To find out the efficiency of USG on upland vegetables and fruits.
- ii) To determine the optimum and economic dose of USG for upland crops.

Materials and Methods

The experiment was conducted at farmers' field of Shibpur, Narsinghdi, FSRD site Palima and MLT site Modhupur, Tangail, FSRD site Goyeshpur, Pabna and FSRD site Syedpur, Rangpur. The experiment was started with Cabbage and brinjal at Tangail during rabi season of 2000-01 and in 2002-03 extended in some new sites with new crops. Different vegetables viz. Cabbage, Cauliflower, Tomato, Potato and fruit crops viz. Papaya and Banana were included in the trial. Details about site characteristics and soils, crop management and fertilization are provided in appendix Table 1 and 2, respectively. The experiment was laid out in RCB design with 6 dispersed replications. Unit plot size was varied from 40 m² to 80 m². There were five treatments viz. (T₁) Recommended dose of N as prilled urea; (T₂) Recommended dose of N as USG; (T₃) 10% less N than recommended dose as USG; (T₄) 20% less N than recommended dose as USG and (T₅) Farmers' practice. But at Norshingdi recommended dose of prilled urea in ring placement was included as another treatment. Other nutrient elements PKSZn were applied in recommended rate. Yield attributes were collected from 10 randomly selected plants and yield was harvested from 10 m² area. All the data were analyzed statistically. Market price of the crop at harvest was recorded to calculate economics.

Results and Discussion

Location : Shibpur, Narsinghdi Crop : Cabbage

The highest head yield of Cabbage was obtained from recommended rate of USG (T3) which was identical to recommended rate of prilled urea applied in ring method (T2). Less of 10-20% of recommended USG produced similar yield with recommended prilled urea applied as broadcast method. It shows that recommended dose of N either as prilled urea with ring placement or as USG gave similar head yield.

Higher gross return, gross margin and benefit-cost ratio was obtained from treatment T3 that was very close to T2. From one year result it might be concluded that recommended dose of N either as USG or as prilled urea with ring placement could be used for growing cabbage at Narsinghdi for higher yield and profit.

Table 1. Agro-economic	performance of	cabbage as	affected b	by USG	application a	ıt Shibpur	MLT
site, Narsinghdi,	2002-03						

Traatmont	Head yield	Gross return	Variable cost	Gross margin	Benefit-cost
Treatment	(t/ha)	(Tk/ha)	(Tk/ha)	(Tk/ha)	ratio
T_1	78.94bc	315760	60365	255395	5.23
T_2	83.01ab	332040	60715	271325	5.47
T_3	84.88a	339520	60715	278805	5.59
T_4	77.24c	308960	60535	248425	5.10
T_5	75.36c	301440	60355	241085	4.99
T6	76.82c	307280	60920	246360	5.07

Market price of cabbage = Tk. 4.00/kg

Cauliflower

Higher curd yield was recorded from T_3 followed by T_2 . Recommended dose of prilled urea applied as ring method and recommended dose of USG produced significantly identical yield. Similarly, recommended dose of prilled urea applied as broadcast method gave similar yield to 10% less of recommended USG. From the experiment it was clear that placement of fertilizer is more important than the source of fertilizer. When prilled urea was applied as ring method gave significantly higher yield over broadcast method. Application of 20% less USG than recommended USG markedly reduce the yield.

Cost and return analysis showed that higher gross return, gross margin and benefit cost ratio was obtained from T_3 followed by T_2 . From the one year result it may be concluded that recommended dose of N either as USG or prilled urea with ring placement could be used for growing cauliflower at Narsinghdi for higher yield and return.

Table 2. Agro-economic performance of cauliflower as affected by USG application at Shibpur MLT site Narsinghdi, 2002-03

Treatment	Curd yield (t/ha)	Gross return (Tk/ha)	Variable cost (Tk/ha)	Gross margin (Tk/ha)	Benefit-cost ratio
T ₁	23.51b	135183	53878	81305	2.51
T_2	24.96a	143520	54228	89292	2.64
T ₃	25.31a	145533	54228	91305	2.68
T_4	22.93bc	131848	54100	77748	2.44
T ₅	21.09d	121268	53970	67298	2.25
T_6	22.33cd	124378	54215	70163	2.29

Market price of cauliflower = Tk. 5.75/kg curd

Location : Palima, Tangail Crop : Cabbage

Results revealed that (Table 3) in 2002-03 recommended USG gave the significantly highest head yield. Recommended rate of prilled urea gave identical yield to 20% less of recommended USG and farmers' practice gave the lowest yield. But during the year 2000-01 and 2001-02, higher and identical yield was obtained from recommended USG and 10% less of recommended USG. From the average of three years data showed that the highest head yield of cabbage was obtained from recommended USG followed by 10% less of recommended USG. Even 20% less of recommended USG gave higher yield over recommended prilled urea. The reason behind this is that in USG form, loss of nitrogen (NO₃-N and NH₄-N) through volatilization and de-nitrification is being reduced.

Regarding cost and return analysis it was observed that the highest gross margin as well as MBCR over farmers practice was obtained from recommended USG followed by 10% less of recommended USG.

Based on three years of experimentation it revealed that efficiency of N as USG is higher than prilled urea and 20% N could be saved by using USG instead of prilled urea.

Table 3. Effect of USG on yield and economics of Cabbage production at Palima, Tangail during 2000-01 to 2002-03

		Yield	(t/ha)		Gross	TVC	Gross	
Treatment	2000-01	2001-02	2002-03	Average	return (Tk./ha)	(Tk./ha)	margin (Tk./ha)	MBCK
Prilled urea (rec.)	82.47c	56.94b	54.07c	64.50	161250	73735	87515	1.89
USG (rec.)	91.73ab	65.04a	63.51a	73.43	183775	73783	109992	5.61
USG10% <rec.< td=""><td>94.81a</td><td>60.14ab</td><td>59.81b</td><td>71.59</td><td>178975</td><td>73663</td><td>105312</td><td>4.94</td></rec.<>	94.81a	60.14ab	59.81b	71.59	178975	73663	105312	4.94
USG20% <rec.< td=""><td>88.77b</td><td>55.09b</td><td>56.20c</td><td>66.69</td><td>166725</td><td>73543</td><td>93182</td><td>2.94</td></rec.<>	88.77b	55.09b	56.20c	66.69	166725	73543	93182	2.94
Farmer's dose	75.68d	46.16c	50.92d	57.59	143975	67766	76209	-

Market price (Tk./kg): Cabbage = 2.50, Urea = 5.70, USG = 6.00, TSP = 14.00, MP = 9.00, Gypsum = 4.00, ZnSO₄ = 35.00

Crop: Brinjal

Fruit yield of Brinjal did not vary significantly among the treatments except with Farmers' practice in 2002-03. But during 2000-01 and 2001-02, the trend was quiet different and significantly higher yield was recorded from 10% less of recommended USG. Recommended prilled urea produced identical yield to 20% less of recommended USG. From the average of three years data it was found that the highest yield was obtained from 10% less of recommended USG. Even 20% less of recommended USG gave higher yield over recommended prilled urea.

Cost and return analysis showed that highest gross return and gross margin were recorded from 10% less than recommended USG application (T₃). MBCR over Farmers' practice was also highest in the same treatment.

From three years results, it was found that the USG (10%<rec.) performed better in terms of yield and economic return. At least 20% N could be reduced if USG was applied instead of prilled urea as source of nitrogen.

_		Yield	(t/ha)	Gross	TVC	Gross		
Treatment	2000-01	2001-02	2002-03	Average	return (Tk./ha)	(Tk./ha)	margin (Tk./ha)	MBCR
Prilled urea (Rec.)	48.05c	58.05c	70.13a	54.74	352440	48503	303937	6.27
USG (Rec.)	58.18b	63.30b	65.93ab	62.47	374820	48523	326297	9.75
USG10% <rec.< td=""><td>68.35a</td><td>69.30a</td><td>70.07a</td><td>69.91</td><td>415440</td><td>48445</td><td>371015</td><td>16.95</td></rec.<>	68.35a	69.30a	70.07a	69.91	415440	48445	371015	16.95
USG20% <rec.< td=""><td>51.94c</td><td>57.80c</td><td>65.32ab</td><td>58.35</td><td>350100</td><td>48367</td><td>301733</td><td>6.05</td></rec.<>	51.94c	57.80c	65.32ab	58.35	350100	48367	301733	6.05
Farmer's dose	39.64d	51.61d	61.80b	51.02	306120	42131	263989	-

Table 4. Effect of USG on yield and economics of Brinjal production at Palima, Tangail during 2000-01 to 2002-03

Market price (Tk./kg): Brinjal= 6.00, Urea = 5.70, USG = 6.00, TSP = 12.00, MP = 9.00, Gypsum = 4.00, ZnSO₄ = 35.00

Crop: Cauliflower

The highest head yield was recorded from 10% less of recommended USG but it was statistically identical to recommended USG and 20% less of recommended USG. But in previous year (2001-02) the significantly higher yield was obtained from recommended USG. Farmers' practice and recommended prilled urea gave similar and the lowest yield. From the average of two years data it was observed that the highest yield was obtained from recommended USG followed by 10% less of recommended USG. Effect of USG over prilled urea was very evident and even 20% less of recommended USG produced higher yield over recommended prilled urea. The lowest yield was recorded from farmers' dose.

From cost and return analysis it showed that the highest gross return, gross margin as well as MBCR were recorded from recommended USG followed by 10% less recommended USG. Application of USG as the source of N was found superior over prilled urea in terms of yield and return.

Table	5.	Effect	of	USG (on yi	ield an	d ecoi	nomics	of C	Cauliflo	wer	product	ion at	t Palima,	Tangail	during
		2001-	-02 t	o 200	2-03											

E		Yield (t/ha)		Gross	TVC	Gross	
Treatment	2001-02	2002-03	Average	return (Tk./ha)	(Tk./ha)	margin (Tk./ha)	MBCR
Prilled urea (Rec.)	48.10c	44.25bc	46.18	138540	55053	83487	2.52
USG (Rec.)	63.15a	48.98ab	56.07	168210	55077	113133	3.05
USG10% <rec.< td=""><td>56.67b</td><td>51.94a</td><td>54.31</td><td>162930</td><td>55023</td><td>107907</td><td>2.96</td></rec.<>	56.67b	51.94a	54.31	162930	55023	107907	2.96
USG20% <rec.< td=""><td>54.17b</td><td>47.50ab</td><td>50.84</td><td>152520</td><td>54969</td><td>97551</td><td>2.77</td></rec.<>	54.17b	47.50ab	50.84	152520	54969	97551	2.77
Farmer's dose	45.88c	41.11c	43.50	130500	54217	76283	2.41

Market price (Tk./kg): Cauliflwer= 3.00, Urea = 5.70, USG = 6.00, TSP = 12.00, MP = 9.00, Gypsum = 4.00, ZnSO₄ = 35.00

Crop : Tomato

Higher fruit yield was recorded from recommended USG which was statistically identical to 10% less recommended USG. Recommended prilled urea produced identical yield to 20% less of recommended USG. However, the trend was slightly varied in previous year (2001-02) and significantly higher yield was obtained from recommended USG. Recommended prilled urea and 10% less of recommended USG produced statistically similar yield. From average data it was found that the highest yield was recorded from recommended USG but 10% less of recommended USG gave higher yield over recommended prilled urea.

The cost and return analysis showed that the highest gross return, gross margin as well as BCR was obtained from the USG (Rec.) dose. From Two years result it was found that recommended USG application was profitable in comparison to prilled urea.

Turaturat		Yield(t/ha)		Gross	TVC	Gross	DCD	
I reatment	2001-02	2002-03	Average	(Tk/ha)	(Tk/ha)	margin (Tk/ha)	BCK	
Prilledurea (Rec.)	92.78b	78.00bc	85.39	42695	93708	333242	4.55	
USG (Rec.)	119.50a	83.22a	101.36	506800	97920	408880	5.17	
USG (10% <rec.)< td=""><td>96.09b</td><td>80.15ab</td><td>88.12</td><td>440600</td><td>96696</td><td>343904</td><td>4.55</td></rec.)<>	96.09b	80.15ab	88.12	440600	96696	343904	4.55	
USG (20% <rec.)< td=""><td>75.75c</td><td>74.52c</td><td>75.14</td><td>375700</td><td>96472</td><td>279228</td><td>3.89</td></rec.)<>	75.75c	74.52c	75.14	375700	96472	279228	3.89	
Farmer's practice	51.68d	42.60d	47.14	235700	91329	144391	2.58	

Table 6. Effect of USG on yield and economics of Tomato at Palima, Tangail during 2001-02 to 2002-03

Market price (Tk./kg): Tomato= 5.00, Urea = 5.70, USG = 6.00, TSP = 12.00, MP = 9.00, Gypsum = 4.00, ZnSO₄ = 35.00

Location : Modhupur, Tangail Crop : Potato

Significantly higher tuber yield was recorded from recommended USG. Recommended prilled urea produced identical yield with other treatments except 20% less N as USG. But in 2001-02, recommended USG showed higher yield but at par to 10% less recommended N as USG. Average of two years data showed that the highest yield was obtained from recommended USG followed by 10% less of recommended USG. The efficiency of USG is much higher than prilled urea and even 10% less of recommended USG gave higher yield than recommended prilled urea.

The cost and return analysis showed that the highest gross return and gross margin was obtained from the USG (Rec.) dose followed by USG (10%<Rec). But BCR did not vary markedly among the treatments except farmers practice.

From two years result it was found that USG application was profitable in comparison to prilled urea. Even 10% less urea when applied as USG produced more tuber yield and economic return over recommended prilled urea dose.

Table 7.	Effect of USG	on yield	and e	economics	of Potato	at M	lodhupur,	Tangail	during	2001-02	to
	2002-03						_	-	_		

		Yield (t/ha)		Gross	TVC	Gross	
Treatment	2001-02	2002-03	Average	return (Tk/ha)	(Tk/ha)	margin (Tk/ha)	BCR
Rec. prilled urea	24.46b	20.94bc	22.67	113350	34988	78362	3.24
Rec. USG	27.23a	22.01a	24.61	123090	53492	88102	3.52
10% <rec.n as="" td="" usg<=""><td>25.90ab</td><td>21.30b</td><td>23.60</td><td>118000</td><td>49577</td><td>83177</td><td>3.31</td></rec.n>	25.90ab	21.30b	23.60	118000	49577	83177	3.31
20% <rec.n as="" td="" usg<=""><td>22.79c</td><td>20.53c</td><td>21.62</td><td>108100</td><td>41766</td><td>73426</td><td>3.12</td></rec.n>	22.79c	20.53c	21.62	108100	41766	73426	3.12
Farmer's practice	23.80bc	21.32b	22.56	112800	40124	72684	2.81

Market price (Tk./kg): Potato = 5.00, Urea = 5.60, USG = 6.00, TSP = 13.00, MP = 8.00, Gypsum = 4.00, ZnSO₄ = 35.00

Location : Syedpur FSRD site, Rangpur Crop : Potato

No significant yield difference in Potato was observed among the treatments except with 20% less of recommended USG. However the highest yield was recorded from recommended USG. Recommended prilled urea produced similar yield with 10% less of recommended USG and Farmers' practice. Similar result was obtained in the previous year, 2001-02. From the average data it was found that the highest tuber yield in Potato was recorded from recommended USG and almost similar yield was obtained from recommended prilled urea, 10% less of recommended USG and Farmers' practice. About 10% yield was increased due to application of USG as source of nitrogen instead of prilled urea.

The cost and return analysis showed that the highest gross return, gross margin as well as benefit cost ratio was calculated from recommended USG. Recommended prilled urea and 10% less of recommended USG almost similar return.

From two years study it was clear that N use efficiency markedly increased in USG over prilled urea and even 10% less of recommended USG produced similar yield and return to recommended prilled urea.

Table 8.	Effect of	USG on	yield	and	economics	of	Potato	at	FSRD	site,	Syedpur,	Rangpur,	during
	2001-02	to 2002-0)3										

	Tu	ber yield (t/ł	na)	Gross	Total	Gross	
Treatment	2001.02	2002 03	Maan	return	variable	margin	BCR
	2001-02	2002-03	Mean	(Tk/ha)	cost (Tk/ha)	(Tk./ha)	
T_1	27.11ab	29.39ab	28.25	99445	45938	53507	2.10
T_2	30.29a	31.85a	31.07	109137	46400	62737	2.35
T ₃	27.02ab	29.58ab	28.30	99690	46171	53519	2.16
T_4	26.37b	27.22b	2678	93995	45943	48052	2.05
T ₅	27.41ab	29.83ab	28.62	100775	45589	55186	2.21

Market price (Tk./kg): Urea = 6.00, USG = 7.00, TSP = 13.00, MP = 8.70, Gypsum = 3.00, ZnSO4 = 35.00, Borax: 40.00, Cowdung==0.25, Potato seed= 10.00, Potato = 3.00

Crop: Tomato

Higher yield of tomato was recorded from recommended USG which was statistically identical to 10% less of recommended USG. Recommended rate of prilled urea produced similar yield with 20% less of recommended USG. The lowest yield was recorded from Farmers' practice. Almost similar result was observed during the year 2001-02. From the average data it was found that the highest fruit yield of Tomato was obtained from recommended USG. Even 20% less of recommended USG gave similar yield with recommended prilled urea.

From the cost and return analysis it was found that the highest gross return, gross margin and benefit cost ratio was obtained from recommended rate of USG followed by 10% less of recommended USG This results implied that use of urea super granule found to be economically viable compared to prilled urea.

	Fr	uit yield (t/h	a)	Gross	Total	Gross margin	BCR	
Treatment	2001-02	2002-03	Mean	return (Tk/ha)	variable cost (Tk/ha)	(Tk./ha)		
T_1	67.22b	60.23cd	63.73	165074	45328	119746	3.64	
T_2	79.13a	73.60a	76.37	198700	45660	153040	4.35	
T_3	73.69ab	68.29ab	70.29	184672	45428	139244	4.07	
T_4	68.13b	62.45bc	65.29	169582	45196	124386	3.75	
Τ5	58.53c	54.34d	56.44	147153	38854	108299	3.79	

Table 9. Effect of USG on yield and economics of Tomato at FSRD site, Syedpur, Rangpur during 2001-2002 to 2002-03

Market price (Tk./kg): Urea = 7.00, USG = 7.00, TSP = 13.00, MP = 8.70, Gypsum = 3.00, ZnSO4 = 35.00, Borax: 40.00, Cowdung==0.25, Tomato: 2.00, Seedling: Tk. 10.00/seedling

Crop: Cabbage

The highest head yield of Cabbage was obtained from recommended rate of USG which was statistically identical to recommended rate of prilled urea and 10% less of recommended USG. About 10% higher yield was recorded from USG over prilled urea. The N use efficiency is higher in USG and even 10% less of recommended USG produced higher yield than recommended prilled urea.

From the cost and return analysis it was found that the highest gross return, gross margin and benefit cost ratio was obtained from recommended rate of USG followed by 10% less of recommended USG. However, BCR among the treatments did not vary markedly and in all cases it is more than 2.

Treatment	Head yield (t/ha)	Gross return (Tk/ha)	Total variable cost (Tk/ha)	Gross margin (Tk./ha)	BCR
T_1	66.23 ab	149018	69079	79939	2.16
T_2	72.28 a	162630	70827	91803	2.29
T ₃	69.30 ab	155925	70531	85394	2.21
T_4	63.55 b	142988	70236	72752	2.04
T_5	63.67 b	143258	70920	72338	2.02

Table 10. Effect of USG on yield and economics of Cabbage at FSRD site, Syedpur, Rangpur during 2002-03

Location : Goyeshpur, FSRD site, Pabna Crop : Papaya

Fruit yield of Papaya did not vary significantly among the different treatments. During 2001-02 yield was only differed with Farmers' practice. No statistically significant difference was observed between prilled urea and USG. But from the average data it was found that the highest fruit yield was recorded from recommended USG. About 13% yield increased due to application of USG over prilled urea.

From cost and return analysis it was found that the highest gross return, gross margin and MBCR was calculated from recommended USG. Therefore, from the two years of experimentation it is evident that efficiency of USG is higher than prilled urea in respect of yield and return.

Table 11. Effect of USG on yield and economics of Papaya at FSRD site Goyeshpur, Pabna during 2001-02 to 2002-03

	,	Yield (t/ha)		Gross	TVC	Gross	
Treatment	2001-02	2002-03	Mean	return (Tk/ha)	(Tk/ha)	margin (Tk/ha)	MBCR
T_1	102.06a	87.61	94.83	284505	83065	201440	14.75
T_2	116.17a	97.28	106.72	320175	84281	235894	18.31
T_3	101.51a	85.12	93.31	279945	83409	196536	12.43
T_4	86.43ab	72.91	79.67	239010	82522	156488	3.19
T 5	80.16b	72.30	76.23	228690	79286	149404	-
F test		NS					

Market price (Tk./kg): Urea = 6.00, USG = 6.50, TSP = 15.00, MP = 8.70, Gypsum = 3.00, ZnO = 40.00, Borax: 45.00, Labour = Tk. 50/day, Papaya = 3.00

Crop: Cauliflower

Curd yield of Cauliflower did not vary significantly among the treatments but slightly higher yield was obtained from USG followed by 10% less recommended USG. Yield obtained from recommended prilled urea was even less than 20% less of recommended USG.

From the cost and return analysis it was found that the highest gross return and gross margin was obtained from recommended USG followed by 10% less of recommended USG. BUT MBCR was the highest in 10% less of recommended USG.

Table 12. Effect of USG on yield and economics of Cabbage at FSRD site, Goyeshpur, Pabna during 2002-03

Treatment	Curd yield (t/ha)	Gross return (Tk/ha)	Total variable cost (Tk/ha)	Gross margin (Tk./ha)	MBCR
T_1	60.74	303700	43931	259769	68.09
T_2	65.65	328250	44141	284109	90.35
T ₃	64.72	323600	43932	279668	150.03
T_4	63.52	317600	43724	273876	289.95
T ₅	57.41	287050	43690	243360	-
F test	NS	-	-	-	-

Appendix table 1. Site characteristics

Logation	۸E7	Soil	ПΗ	OM (%)	Total N	K (meq/100	Available nutrients (mg/g soil)			
LOCATION	AEZ	texture	Γ''		(%)	g soil)	Р	S	Zn	В
Shibpur, Norshingdi	9	CL	5.2	1.86	0.14	94.5	15.5	23.8	3.54	-
Palima, Tangail	8	SCL	5.8	1.72	0.07	0.10	5.20	13.0	7.54	-
Modhupur, Tangail	28	SC	5.02	1.56	0.10	0.05	25.9	4.13	1.01	0.04
Syedpur, Rangpur	3	CL	-	-	-	-	-	-	-	-
Goyeshpur, Pabna	11	SCL	8.4	-	0.75	0.26	5.0	4.45	0.48	0.46

Appendix table 2. Crop management and fertilization

Crop	Management	
------	------------	--

Site	Crop	Variety	Spacing (cm)	Planting time	Harvesting time	Irrig. (No.)	Pesticide use
Shibpur	Cabbage	Atlas-70	60 cm x 45 cm	Last week of Nov.	28 Jan-2 Feb.	3	Dursban Dithane M-45
	Cauliflower	Agrahayani	60 cm x 60 cm	Last week of Nov.	1 st wk. of Feb.	3	Dursban Dithane M-45
Palima	Brinjal	Singhnath	60 cm x 60 cm	1 st wk. of Nov.	18 Feb20 Mar.	3	-
	Cabbage	Atlas-70	60 cm x 60 cm	Last wk. of Oct. – 1 st wk. of Nov.	Mid. Jan.	2	-
	Cauliflower	-	60 cm x 60 cm	12-22 Oct.	20 Dec20 Jan.	2	-
	Tomato	BARI Tomato-8	60 cm x 40 cm	3 rd wk. of Nov.	Mid. Jan mid. Feb.	2	-
Modhupur	Potato	Diamont	60 cm x 20 cm	2 nd wk. of Dec.	2 nd wk. of Mar.	3	Dimecrone Dithane M-45
Syedpur	Potato	Cardinal	60 cm x 25 cm	8-9 Dec.	1 st wk. of Mar.	3	-
	Tomato	Ratan	60 cm x 45 cm	1 st wk. of Dec.	9 Mar6 April	3	-
Goyeshpur	Papaya	-	2m x 2m	-	1 st wk. of Dec2 nd wk. of April	-	Darsban, Dimecrone, Calthan
	liflower	v white	i0 cm x 45 cm	Last week of Oct.	eek of Feb.	3	jent [,]

Fertilization

Site	Crop	Fertilizer rate (NPKSZn in kg/ha)	Application (Method & time)
Shibpur	Cabbage	RF = 138-24-60-20 + CD @4t/ha	All PKS and CD were applied during final land
		FP = 173-38-62 + CD @4t/ha	preparation and prilled urea was topdressed in
	Cauliflower	RF = 100-26-67-20 + CD @4t/ha	3 equal splits at 20, 50, 65 DAT and 15, 30, 45
		FP = 173-44-42 + CD @4t/ha	DAT for Cabbage and Cauliflower,
			respectively.
			USG was applied at 15 and 20 DAT for
			Cabbage and Cauliflower, respectively, as ring
			method 4 inches apart from each plant and 3
			inches deep in soil.
Palima	Cabbage	RF = 195-56-162-13 + CD 3t/ha	All PKS and CD were applied during final land
		FP = 105-25-90 + CD (@5t/ha)	preparation and prilled urea was topdressed in
	Caulifiower	RF = 97-50-80-10 + CD (@5t/na)	3 equal splits at 20, 50, 65 DAT and 15, 30, 45
	Prinial	PP = 103-22-37 + CD @ 5t/ha	DAT for Cabbage and Caulinower,
	Dilijai	$RF = 70-30-00-3+CD$ (U_{3}/I_{10})	USC was applied at 15 and 20 DAT for
		FF = 00-35-00+ CD @3//la	Cabbage and Cauliflower, respectively, as ring
			method 3-4 inches apart from each plant and
			2-3 inches deen in soil
			In Brinial, USG was applied at 21 DAT in 7.5-
	Tomata	DE - 170 01 163 37	10 inches apart from plant and 5-7 inches
	Tomato	FP = 1/2 - 21 - 103 - 37 FP = 128 - 36 - 78	depth of soil. But prilled urea was applied in
		11 - 120-30-70	three equal splits at 21, 35 and 55 DAT.
			In Tomato USG was applied at 15 DAT in 7.5-
			10 inches apart from plant and 5-7.5 inches
			depth of soil. But prilled urea was applied in
			two equal splits at 13 and 35 DAT.
Modhupur	Potato	RF = 136-6-139-21-1	In Potato, all PKSZn and 1\2 prilled urea
		FP = 115-75-190-15-2.5	applied as basal and rest half urea was side
			dressed at 30 DAP. USG was applied
			between tuber in ground level at the time of
Cuadaur	Detete	DE = 140.09.70.10.15.1.5.1. CD @5t/ba	planting.
Syeupur	Polalo	RF = 140-20-70-10-15-1.5-1 + CD (0.5)/11a ED = 103.22.37 + CD (0.5)/15a	In Polalo, all PKS My ZIT B and T/2 philed
	Tomato	RF = 150-40-140-30-4-1+CD @5t/ba	side dressed at 30 DAP LISG was applied
	Tomato	FP = 101-34-62-9+ CD @2t/ha	between tuber in ground level at the time of
			planting.
			In Tomato USG was applied at 15 DAT in 7.5-
			10 inches apart from plant and 5-7.5 inches
			depth of soil. But prilled urea was applied in
			two equal splits at 13 and 35 DAT.
	obage	RF = 172-7-24-38-0.5-10+ CD @6t/ha	All PKS and CD were applied during final land
		FP = 164-40-124-32-2-1 + CD @7.5t/ha	preparation and prilled urea was top dressed
			in 3 equal splits at 20, 50, 65 DAT. USG was
			applied as ring method at 15 DAT.
Goyeshpur	Papaya	RF = 633-277-690-113-8-18 + CD	All PSZNB and CD and 50% K was applied in
		@3.5t/ha + MOC@ 750 kg/ha	pit 7 days before planting. Rest 25% and 2/3rd
		FP = 60 kg N/na	N was applied at 30 DAP. Remaining N and K
	Cauliflower	-158 5/ 15 33 ka/ba of NDKS	was applied at 00 DAP. Entire amount of TSP MP Gyrogum and
	Cauinowel	= 100- 04-40-00 kg/11a 01 NPKO = 60 ka N/ha	Boray were applied as based Prilled ures was
			annlied in two installments at 15 and 35 DAD
			USG was applied at 20 DAP in 3-4 inches
			anart from plant and 2-3 inches depth of soil

EFFECT OF VARIETY AND NITROGEN FERTILIZER MANAGEMENT ON THE YIELD OF TOMATO AT SHIBPUR MLT SITE, NARSINGDI

Abstract

An experiment was carried out at farmers' field of Shibpur MLT site, Narsingdi to determine efficiency of USG as a source of N and also its optimally economic dose of USG for Tomato. The experiment was laid out in Spilt plot design with 4 dispersed replication. Two tomato varieties BARI Tomato-2 (Ratan) and BARI Tomato-8 (Shila) were assigned to main plots and sub-plots received six treatments with N source viz. S₁) Recommended dose of N as prilled urea (broadcast), S₂) Recom. dose of N as prilled urea (ring placement), S₃) 10%<Reco. dose of prilled urea (ring placement), S₄) Recom. dose of N as USG; S₅) 10%<Recom. dose of N as USG and; S₆) Farmers' dose. The variety Shila gave significantly highest yield than Ratan. Significantly higher yield was obtained from the variety Shila with recommended dose of N as USG which was statistically similar to recommended dose of N applied as prilled urea in ring placement with same variety. Economic analysis showed that variety Shila with recommended dose of N as USG provided higher benefit-cost ratio.

Introduction

Narsingdi district is well known for growing vegetables and fruits. It has diversified land type belonging to AEZ-9. About 10 thousand hectares of land of the district is under vegetable cultivation and rabi vegetables are grown in 6000 hectares of land (source: DAE, Narsingdi). Farmers grow vegetables in medium high land having cropping pattern Jute-Fallow-Vegetable. But farmers do not grow same vegetables in the same land every year. Farmers apply fertilizers to individual crop but type and amount of nutrient varies for particular crop. This may affect crop yield and soil health as well. Particularly farmers use higher dose of N which is harmful to environment. Tomato is one of the major winter crops grown here. A production programme was conducted on BARI released tomato varieties BARI Tomato-2 and BARI Tomato-3 during 1996-97. Both the varieties gave remarkably higher yield than the local variety and farmers accepted those varieties. But in the recent years farmers are not getting potential yield of tomato. So, there was a need to check whether variety or nutrient management is responsible for lower yield of tomato. The present study was thus designed to achieve the following objectives.

- i. To select appropriate variety of tomato
- ii. To determine efficient management of N for profitable production of Tomato

Materials and Methods

The experiment was conducted at farmers' field of Shibpur Multi Location Testing (MLT) site, Narsingdi during rabi 2002-2003. The land was medium high with sandy loam soil belonging to AEZ 9. The initial soil fertility status (Table-1) was determined by collecting soil samples from each replication and analyzed in the SSD laboratory, BARI. The experiment was laid out in Spilt Plot with 4 dispersed replications. Size of unit plot was 4m x 3m. Two tomato varieties BARI Tomato-2 (Ratan) and BARI Tomato-8 (Shila) were assigned to main plots whereas sub-plots received six N management treatments viz. S₁) Recommended dose of N as prilled urea (broadcast), S₂) Recom. dose of N as prilled urea (ring placement), S₃) 10% <Recom. dose of N as prilled urea (ring placement), S₄) Recom. dose of N as USG; S₅) 10%<Recom. N as USG and; S₆) Farmers' management. The recommended fertilizer dose for Tomato as calculated based on soil test value (IPNS perspective) was 175-20-22-12-30-2-5000 kg N-P-K-Mg-S-B-CD/ha and farmers' dose 81-101-90-5000 kg N-P-K-CD/ha. All of Cow dung (CD), P, K, Mg, S and B were applied at the time of final land preparation. Prilled urea (broadcast) was applied as top dress in two equal splits at 15 and 35 DAT. In case of prilled urea (ring method), placements were done twice at 15 and 35 DAT in rings made 17.5 - 25 cm apart from each plant and 7.5 cm deep in the soil. USG was applied once at 15 DAT at 17.5-25.cm apart from each plant and dibbled 12.5 cm deep in the soil. Two irrigation was applied following top dress of N. Pescticides like Dithane M-45, Rovral and Ridomil were applied as per recommendation.

Earthing up was done about 1 month after transplanting. About 30-day old seedlings were planted at 60 cm x 40 cm. Seedlings were transplanted during 26 October to 3 November, 2002. The crop was harvested during 3-17 February, 2003. Yield attributes were collected from 5 randomly selected plants and analyzed statistically. Market price of the crop was recorded at each harvest to calculate economics.

Results and Discussions

Analysis of soil samples showed that soil pH is close to neutral and organic matter content of soil is moderate. Soil was very low in N but P and K content was medium. Mg, S and B was at or below critical level.

Effect of variety

Plant height, fruit clusters/plant and fruit yield was significantly affected by variety. The variety **Shila** showed significantly highest plant height, fruit clusters/plant than variety **Ratan**. Significantly highest yield was obtained from Shila due to higher number of fruit clusters/plant, individual fruit weight and fruit yield /plant.

Effect of nitrogen management

Plant height and all yield attributes were significantly affected by nitrogen management treatments except plant population/plot. Treatments S_1 , S_2 and S_4 were statistically identical in respect of plant height and clusters/plant and higher than other treatments. The lowest plant height and clusters/plant was obtained from S_6 (Farmers' management). Fruits/clusters was statistically similar in treatment S_1 and S_2 which were higher than other treatments. Significantly highest individual fruit wt. and fruit yield/plant were recorded from (S₄) which were statistically identical to S_2 . Highest fruit yield was obtained from treatment S_4 (recommended dose of N as USG) which was statistically similar to treatment S_2 (recommended dose of N as prilled urea with ring placement) due to higher fruit wt. and fruit yield/plant.

Interaction between variety and fertilizer

Each of the yields attributes and fruit yield along with plant height was significantly influenced by variety and nitrogen management interaction. Plant population/plot was statistically similar. Significantly higher number of fruit clusters/plant were obtained from S_2V_1 , S_2V_2 and S_2V_4 . The variety Shila showed higher no. of cluster/plant in all nitrogen management treatment than variety Ratan. But fruit/cluster was higher in case of variety Ratan in $S_1 \& S_2$. Higher individual fruit wt. and fruit yield/plant was showed in variety Shila with recommended dose of N as USG (S₄) that was at par to S_2 in same variety. The variety Shila gave significantly highest fruit yield with recommended dose of N as USG and statistically identical yield of the variety was also obtained with recommended dose of N as prilled urea with ring placement (S₂). Recommended dose of N as USG produced 8% higher yield than recommended dose of N as USG. Reduction of N (10%) as USG or prilled urea (ring placement) reduced yield significantly than recommended dose of N.

Economic performance

The highest gross return and gross margin was obtained from variety Shila with recommended dose of fertilizer of N as USG (V_2S_4) which was close to V_2S_2 . Variety Ratan showed lower gross return and gross margin than Shila in all treatments. However, the variety Shila with recommended dose of N as USG showed higher benefit-cost ratio closely followed by recommended dose of N as prilled urea (ring placement) with same variety.

Conclusion

One-year result showed that the tomato variety Shila performed better than Ratan. Again, Shila produced significantly higher yield with recommended dose of N as USG or recommended dose of N as prilled urea (ring placement) and benefit-cost was also higher with the same variety and treatments. For more confirmation the experiment should be repeated next year.

Farmer's reaction

Farmers preferred variety Shila as it gave higher yield than Ratan. The other reasons they mentioned that plants of variety Shila was more strong and stout and more resistant to diseases. But they germination percentage of Shila was poor compared to Ratan.

Table 1. Effect of variety on the yield and yield attributes of Tomato at Shibpur MLT site, Narsingdi during rabi 2002-03

	Plant	Plant	Fruit	Fruits/	Individual	Fruit yield/	Fruit
Treatment	Population	height	cluster/	clusters	fruit wt.	plant	yield
	$/12 \text{ m}^2$	(cm)	plant (No.)	(No.)	(g)	(kg)	(t/ha)
Ratan (V ₁)	42.6	61.28	7.10	2.98	70.5	1.77	62.39
Shila (V ₂)	43.4	83.98	9.39	2.61	78.5	1.96	70.36
LSD (.05)	NS	11.62	1.59	NS	NS	NS	6.20

Table 2. Effect of N management on the yield and yield attributes of Tomato at Shibpur MLT site, Narsingdi during rabi 2002-03

	Plant	Plant	Fruit	Fruits/	Individual	Fruit yield/	Fruit
Treatment	Population	height	cluster/	clusters	fruit wt.	plant	yield
	$/12 \text{ m}^2$	(cm)	plant (No.)	(No.)	(g)	(kg)	(t/ha)
\mathbf{S}_1	42.9	74.53	8.65	2.98	77.0	1.92	68.65
\mathbf{S}_2	43.1	74.38	8.63	2.95	80.6	2.01	71.17
S_3	43.0	71.90	8.25	2.81	72.5	1.81	64.73
\mathbf{S}_4	42.5	74.65	8.38	2.76	82.9	2.07	73.31
S_5	43.1	71.01	7.93	2.68	69.1	1.73	62.35
S_6	43.3	69.33	7.65	2.58	65.0	1.63	57.90
LSD (.05)	NS	0.37	0.27	0.38	2.41	0.06	3.31

Table 3. Interaction between variety and N management on the yield and yield attributes of Tomato at Shibpur MLT site, Narsingdi during rabi 2002-03

	Plant	Plant	Fruit	Fruits/	Individual	Fruit yield/	Fruit
Treatment	Population	height	cluster/	clusters	fruit wt.	plant	yield
	$/12 \text{ m}^2$	(cm)	plant (No.)	(No.)	(g)	(kg)	(t/ha)
V_1S_1	42.8	62.30	7.50	3.15	73.5	1.82	65.23
V_1S_2	43.0	61.60	7.45	3.20	70.8	1.91	66.73
V_1S_3	42.5	60.85	7.05	3.00	67.5	1.68	59.06
V_1S_4	41.5	63.15	7.25	2.90	78.8	1.97	68.05
V_1S_5	42.8	60.38	6.80	2.85	65.3	1.65	59.99
V_1S_6	43.0	59.40	6.55	2.75	61.5	1.57	54.93
V_2S_1	43.0	86.75	9.80	2.80	80.5	2.02	72.76
V_2S_2	43.3	87.15	9.80	2.70	84.5	2.11	75.60
V_2S_3	43.5	87.95	9.45	2.63	77.5	1.94	70.30
V_2S_4	43.5	86.15	9.50	2.63	87.0	2.18	78.56
V_2S_5	43.5	81.65	9.05	2.50	73.0	1.81	64.70
V_2S_6	43.5	79.25	8.75	2.4	68.5	1.69	60.87
LSD (.05)	NS	1.24	0.33	0.12	2.95	0.07	4.06
CV (%)	3.70	1.00	3.90	2.90	2.70	2.60	4.20

Treatment	Gross return (Tk/ha)	Total cost of production (Tk/ha)	Gross Margin (Tk/ha)	Benefit-Cost Ratio
V_1S_1	684915	77362	607553	8.85
V_1S_2	700665	77712	622953	9.02
V_1S_3	620130	77414	542716	8.01
V_1S_4	714525	77712	636813	9.19
V_1S_5	629895	77414	552481	8.14
V_1S_6	576765	77845	498920	7.45
V_2S_1	756735	77362	679373	9.78
V_2S_2	793800	77712	716088	10.21
V_2S_3	738150	77414	660736	9.54
V_2S_4	740880	77712	747168	10.61
V_2S_5	679350	77414	601936	8.78
V_2S_6	639135	77845	561290	8.21

Table 4. Cost and return analysis of tomato as affected by variety and N management at Shibpur MLT site, Narsingdi during rabi 2002-03

Market price of Tomato = Tk 10.5/kg

Appendix table 1: Analytical data of initial soil sample (from SSD, BARI, Joydebpur, Gazipur)

Samula	лU	OM	Ca	Mg	Κ	Total	Р	S	Cu	Fe	Mn	Zn	В
Sample	рп	%	meq/100 ml		N %		µg/ml						
1.	5.5	1.12	3.9	.80	.28	.059	10	15	3.0	248	7.8	3.4	0.20
2.	5.8	1.26	3.5	.68	.30	.067	18	11	5.2	287	18.6	6.0	0.22
Mean	5.7	1.19	3.7	0.74	.29	.063	19	13	4.1	268	13.2	4.7	0.21
Critical level			2.0	0.8	0.2		14	14	1.0	10.0	5.0	2.0	0.20

EFFECT OF DIFFERENT LEVELS AND METHODS OF NITROGEN APPLICATION ON THE GROWTH AND YIELD OF CAULIFLOWER

Abstract

An experiment was conducted at Farming System Research and Development (FSRD) site, Goyeshpur, Pabna during the Rabi season of 2000-01 to 2002-03 to find out the optimum nitrogen fertilizer dose and the best method of fertilizer application for cauliflower production. Four different nitrogen fertilizer doses along with no fertilizer treatment and three fertilizer management practices were employed for the experiment. Average of three years data revealed that higher levels of nitrogen with 50% basal and two equal split at 30 and 45 DAP gave significantly higher yield of cauliflower.

Introduction

Cauliflower (Brassica *oleracea* var. *botrytis*) is an important winter vegetable crop in Bangladesh and its annual production of 79 metric tons (BBS, 1997-98). It is a high value cash crop for early and late growers in winter season. In Pabna district it is very popular winter crop to the farmers and they grow it as a commercial crop. A field survey result also revealed that variety 'White Contessa' performed well in FSRD site, Goyeshpur, Pabna. But the farmers of the area did not follow the recommended fertilizer dose particularly for nitrogenous fertilizer and have very little knowledge about the method of application. As a result, the yield is not at satisfactory level. The efficiency of nitrogen fertilizer could be increased more than 30% of existing by its proper nitrogen fertilizer management. Keeping these views in mind, the present study was undertaken with the following objectives.

- i. To find out optimum nitrogen dose and the best method of application;
- ii. To find out a economic nitrogen dose for cauliflower.

Materials and Methods

The experiment was conducted at FSRD site, Goyeshpur, Pabna during the winter season of 2000-01 to 2002-03 in High Ganges River Flood Plain (AEZ 11). Before starting the experiment a composite soil sample was collected and analyzed (Appendix 1). The experiment was laid out in two-factor RCB design with three replications. Four level of nitrogen fertilizer were used e.g. Control (No), Medium Yield Goal (MYG=68kgN/ha), High Yield Goal (HYG=98kg N/ha) and Farmers Practice (FP=120kgN/ha). Three management practices were M₁= Half of N was be applied as basal and rest two equal splits at 30 and 45 DAP, M_2 = In three equal installment at 15, 30 and 45 DAP (Farmers Practice), M₃= In two equal installments at 15 and 35 DAP (Rec. practice) as top dress. Except nitrogen other fertilizer were used at the rate of 34-80-20-7.5 kg P-K-S-B/ha (Recom. dose) and at the rate of 38-112.5-19-1..5 Kg P-K-S-B/ha (Farmers' Practice). The unit plot size was 3.6m x 3m. Cauliflower (var. White Contessa) 35 days seedling were transplanted in 2nd week of November with 60 cm x45 cm spacing. Nitrogen fertilizer was used as per treatment and others fertilizers were used during final land preparation. Pesticide 'Fifanon' was used three times against leaf borer and crops were irrigated two times at 15 and 45 DAP. 50% curd initiation were started at 35-40 DAP. Other intercultural operations were done as and when required. Crops were harvested in 1st week of January. Necessary data were collected and analyzed statistically.

Results and Discussion

Results showed that curd yield of Cauliflower varied significantly among the treatments. The highest curd yield (58.93 t/ha) was obtained in 2002-03 from HYG+M₁ treatment which was statistically similar to HYG +M2, HYG+M3 and MYG + M2. During 2001-02 yield was comparatively low due to irrigation problem. But the trend was almost same. During the year 2000-01, the highest yield was recorded from HYG+M₁ which was also identical to HYG + M3. From the average of three years data it was found that the highest yield was recorded from HYG + M1 treatment. Higher levels of nitrogen (HYG) with 50% basal and two equal split at 30 and 45 DAP produced the highest yield. The 2^{nd}

highest yield was recorded from HYG + M3, i.e. nitrogen dose for HYG with two equal installments at 15 and 35 DAP (recommended practice). This result indicated that application of 50% nitrogen as basal plays a significant role for higher production of cauliflower.

From cost and return analysis (average) it was found that the highest gross margin and MBCR over control were obtained from high yield goal with M_1 management (HYG+M₁) where 50% basal and two equal splits of nitrogenous fertilizer were applied at 30 and 45 DAP. Almost similar trend was observed over the years.

Conclusion

From the results of three consecutive years it was concluded that higher rate of nitrogenous fertilizer with 50% basal and two equal split at 30 and 45 DAP had significant positive effect on yield of cauliflower.

Recommendation:

Nitrogenous fertilizer for high yield goal (98 kg /ha of N) with 50% basal and two equal split at 30 and 45 DAP could be recommended for growing of Cauliflower in High Ganges River Flood plain soils of Pabna.

Table 1. Effect of different fertilizer doses and management on yield of cauliflower at FSRD site, Goyeshpur during 2000-01 to 2002-03

Tractmonte		Curd yie	ld (t/ha)	
Treatments	2000-01	2001-02	2002-03	Mean
No	25.99d	9.27f	23.35c	19.54
$MYG + M_1$	41.98c	24.34bcd	45.36d	37.23
$MYG + M_2$	44.70bc	22.45cd	50.62ab	39.26
$MYG + M_3$	43.15c	17.47c	46.35b	35.66
$HYG + M_1$	59.39a	29.23a	58.93a	49.18
$HYG + M_2$	44.70bc	23.82bcd	50.83ab	39.78
$HYG + M_3$	55.64ab	21.15de	50.36ab	42.38
FP	49.04abc	25.81abc	48.98b	41.28

Table 2. Cost and return analysis of different fertilizer doses and management in cauliflower at FSRD site, Goyeshpur during 2000-01 to 2002-03

Year	Treatment	Gross return (Tk/ha)	Total variable cost (Tk/ha)	Gross margin (Tk/ha)	MBCR
2000-01	No	129950	37998	91952	-
	$MYG + M_1$	209900	38898	171002	87.83
	$MYG + M_2$	223500	39108	184392	83.28
	$MYG + M_3$	215750	38898	176852	94.33
	$HYG + M_1$	296950	39074	257876	155.13
	$HYG + M_2$	233500	39484	194016	68.68
	$HYG + M_3$	278200	39074	239126	136.78
	FP	265200	39364	225836	98.01
2001-02	No	46350	38859	7491	-
	$MYG + M_1$	121700	39853	81727	66.64
	$MYG + M_2$	112250	39973	72397	65.30
	$MYG + M_3$	87350	39673	47677	49.37
	$HYG + M_1$	146150	40029	106121	84.30
	$HYG + M_2$	119100	40209	78891	52.89
	$HYG + M_3$	105750	40029	65721	49.77
	FP	129050	40471	88579	50.30

Year	Treatment	Gross return (Tk/ha)	Total variable cost (Tk/ha)	Gross margin (Tk/ha)	MBCR
2002-03	No	116750	38979	77771	-
	$MYG + M_1$	226800	39973	186707	109.59
	$MYG + M_2$	253100	40093	213127	121.50
	$MYG + M_3$	231750	39793	191957	40.28
	$HYG + M_1$	294650	40149	254501	151.05
	$HYG + M_2$	254150	40329	213821	100.78
	$HYG + M_3$	251800	40149	211651	127.50
	FP	244900	40591	204309	78.50
Mean	No	97683	38612	59071	-
	$MYG + M_1$	186133	39575	146558	90.85
	$MYG + M_2$	196283	39725	156558	87.59
	$MYG + M_3$	178283	39455	138828	94.61
	$HYG + M_1$	245917	39751	206166	129.14
	$HYG + M_2$	202250	40007	162243	73.96
	$HYG + M_3$	211917	39751	172166	99.29
	FP	213050	40142	172908	74.40

Table 2. Contd.

Appendix table 1. Nutrient status of the initial soil sample (0.15cm depth) at FSRD site, Goyeshpur, Pabna

		K	0/ total	Р	S	В	Zn
Sample	\mathbf{P}^{H}	meq/100g soil	% total N		microgram	/100g soil	
Sample-1	8.5	0.26	0.07	6	5.0	0.60	0.42
Critical limit	Alkaline	Medium	VL	VL	VL	Optimum	Optimum

Appendix table 2. Yield and yield contributing characters of cauliflower with different fertilizer doses and different management

Treatments	Plant height (cm)	Length of curd (cm)	Breath of curd (cm)	Whole plant weight (kg)	Marketable curd weight (kg)	Yield (t/ha)
No	45.40b	6.81d	12.36d	1.12c	0.63c	23.35c
MYG+ M ₁	57.20a	8.49abc	15.65bc	1.86b	1.25b	45.36b
MYG+M ₂	58.85a	8.40abc	15.90bc	2.14ab	1.33b	50.62ab
MYG+M ₃	57.35a	8.13c	15.55bc	1.96b	1.25b	46.35b
HYG+ M ₁	58.81a	8.84a	17.08a	2.40a	1.66a	58.93a
HYG +M ₂	57.55a	8.46abc	16.10ab	2.09ab	1.32b	50.83ab
HYG +M ₃	57.30a	8.74ab	16.07ab	1.92b	1.32b	50.36ab
FP	58.95a	8.27bc	14.90c	2.11ab	1.26b	48.98b
CV%	4.8	3.9	4.4	12.1	12.3	11.5

Appendix table 3. Yield and yield contributing characters of cauliflower with different fertilizer doses and different management (2000-01)

Treatment	Curd length (cm)	Breath length (cm)	Marketable wt (kg)	Yield (t/ha)
No	6.41b	12.41b	0.70d	25.99d
$MYG + M_1$	7.50a	15.70a	1.14c	41.98c
$MYG + M_2$	7.73a	16.00a	1.21bc	44.70bc
$MYG + M_3$	7.83a	15.30a	1.18c	43.15c
$HYG + M_1$	8.57a	16.63a	1.62a	59.39a
$HYG + M_2$	7.57a	15.97a	1.22bc	44.70bc
$HYG + M_3$	8.23a	17.17a	1.52ab	55.64ab
FP	8.10a	17.03a	1.21bc	49.04abc
CV (%)	7.2	7.9	13.7	13.5

Tractmont	Plant height	Whole plant	Marketable	Curd si	ze (cm)	Curd yield
Treatment	(cm)	weight (kg)	curd weight (kg)	length	breadth	(t/ha)
No	35.00d	0.45e	0.25e	4.75d	9.57c	9.27f
$MYG + M_1$	45.45ab	1.09bc	0.66bc	7.02ab	13.20ab	24.34bcd
$MYG + M_2$	40.85c	1.04bc	0.62c	6.48b	12.78ab	22.45cd
$MYG + M_3$	45.63ab	0.75d	0.47d	5.68c	11.67b	17.47c
$HYG + M_1$	47.70a	1.31a	0.79a	7.53a	14.52a	29.23a
$HYG + M_2$	43.85abc	1.05bc	0.65bc	6.79ab	13.62a	23.82bcd
$HYG + M_3$	41.75bc	0.92cd	0.60c	6.60b	13.35a	21.15de
FP	45.25ab	1.12b	0.70abc	6.72ab	14.12a	25.81abc
CV (%)	5.5	11.8	11.7	8.3	8.0	12.3

Appendix table 4. Yield and yield contributing characters of cauliflower with different fertilizer doses and different management (2001-02)

Cost of input (Tk./kg): Urea = 5.50, TSP= 13.00, MP = 9.00, Gypsum = 3.00, Borax = 40.00, Seedling = Tk. 0.40/Seedling, Plough = Tk. 1200/ha, Labour = 200 labour/8hrs @ Tk. 60

Price of output (Tk./kg): Cauliflower = Tk.5.00/kg

EFFECT OF BORON ON MUSTARD

Abstract

A field experiment was conducted at Mymensingh Sadar and Netrakona MLT sites of Mymensingh and FSRD site Palima at Tangail during rabi season of 2002-03 to evaluate the effect of boron on the growth and yield of mustard and identify a most suitable dose of boron as well as suitable mustard variety for grater Mymensingh and Tangail. Three short duration Mustard variety (Improved Tori-7, BARI Sarisha-9 and BARI Sarisha-12) were tested against five different levels of boron (0.0, 0.5, 1.0, 1.5 and 2.0 kg/ha). Another higher level of B (2.5 kg/ha) was included at Tangail. Results revealed that at Mymensingh, application of boron increases significantly plant height, siliqua per plant, seeds per siliqua, seed yield and stover yield of Mustard. The highest seed yield was obtained from 1.5 kg B ha⁻¹ and the variety Improved Tori-7 gave the highest yield followed by BARI Sarisha-9. But at Palima, Tangail the highest yield was recorded from BARI Sarisha 9 and by BARI Sarisha 12 and application of B @ 1.0 kg/ha gave the highest yield which was also identical to other higher levels. From the interaction table it was found that BARI Sarisha-9 along with 1.0 kg/ha of B produced the highest seed yield of Mustard.

Introduction

Mustard is the principal oleaginous crop of Bangladesh. It covers 58.6% of the total oilseed area and produces 52.2% of the total oilseed production in the country. The average yield of mustard per unit area in Bangladesh is very low compared with other mustard producing countries. It has been identified that micro-nutrient deficiency problem on many crops have been warranted due to intensive cropping with rice and other crops. The practice of intensive cropping with modern varieties causes a dramatic depletion of inherent nutrient reserves of some other nutrients such as S, Zn and B are being observed in many parts of the country. Boron deficiency was observed in Mustard at grater Mymensingh and Tangail district that results poor yield of Mustard. This is mainly due to less pod as well as siliqua formation. In general Brassica needs higher requirement of boron and they are not responding positively with lower supply, and severe deficiency may result in floral abortion and significant drop in seed production. Boron increases the number of siliqua and yield of mustard. The application of Boron in conjugation with Sulphur caused 42% increased seed yield of mustard. Recently, BARI has developed some short duration high yielding variety of Mustard which could be fits well in existing cropping pattern. The boron requirement for those varieties is not yet established across the country. The present investigation was, therefore, undertaken to evaluate the effect of boron on the growth and yield performance of mustard and to find out the suitable boron fertilizer dose for mustard and to observe if there is any genotypic difference for boron application at Mymensingh and Tangail district.

Materials and Methods

The experiment was conducted at Mymensingh sadar and Netrakona MLT site of greater Mymensingh and FSRD site Palima at Tangail district during rabi season of 2002-03. The experiment was laid out in randomized complete block design (factorial) with 3 replications at Mymensingh and split plot design with six dispersed replications at Tangail. The factorial RCB design was followed where three varieties (Improved Tori-7, BARI Sarisha-9, & BARI Sarisha-12) and five Boron doses (0, 0.5, 1.0, 1.5, 2.0 kg B ha⁻¹) were combined and assigned as random. For split plot design, varieties were in main plot and boron levels were given in sub-plot. Mustard varieties Improved Tori-7, BARI Sarisha-9 and BARI Sarisha-12 were studied against five different boron levels at Mymensingh and six different levels at Tangail.

Initial soil samples were collected from both locations and analyzed for chemical characteristics of soil (Appendix Table 1) following standard methods. The plot received NPKS fertilizer as a blanket dose. Based on soil test report the plot were fertilized by the application of 100-20-50-20 kg/ha and 97-33-55-38 kg/ha of NPKS were applied at Mymensingh and Tangail, respectively. Boric acid

(ALPHA BORON) was used as the source of boron. Full amount of P, K, S, and B and half of N were applied as basal. Rest half was applied as top dress after 30 days of sowing. Recommended seed rate (8 kg ha⁻¹) were sown as broadcast method during October 30 to November 06 at Mymensingh and during 3rd week of November at Tangail. The crop was harvested during 4th week of January at Mymensingh and in 1st week of February at Tangail. Data on plant height, branches per plant, siliqua per plant, seeds per siliqua, seed and stover yield were recorded and the data were analyzed by using a suitable package (MSTAT) following ANOVA technique. The differences among the treatment means were evaluated by least significant difference (LSD).

Results and Discussion

Location: Mymensingh

Effect of Variety: The yield components of mustard as influenced by different varieties were statistically significant at Mymensingh sadar but seed and stover yield were not significantly differed among each other. On the other hand, number of pod plant⁻¹ and seed yield significantly differed at Netrakona location. In both the locations, the variety Improved Tori-7 gave the highest yield, which was followed by BARI Sarisha-9.

Effect of Boron: Number of pods per plant, number of seed per pod and seed yield was responded significantly by the application of Boron fertilizers. It is observed from Table 1 that all boron applied treatment significantly gave maximum number of pods per plant. The highest number of pods was observed from 2.0 kg B/ha (55.8) which were statistically similar with other boron applied treatments but it was differed with boron less plot (42.8). The same trend was also found in case of seeds per pod. The highest number of pods was recorded from 1.5 kg B/ha (14.4) and it was statistically similar with other Boron applied plots but differed with boron less plot (12.8). The seed yield statistically significant among the treatments. The highest yield was recorded from 1.5 kg B/ha (1189 kg/ha) and it was at par with 2.0 kg B (1122 kg/ha) but significantly differed with 0.5 and 1.0 kg B/ha. The yield of without boron plot was only 887 kg/ha.

Interaction between variety and Boron: The interaction effect of Boron and variety for both the locations were statistically significant. The highest seed yield of mustard was recorded where Improved Tori-7 was grown with 1.5 kg B/ha (1217 kg/ha) and the lowest from BARI Sarisha-12 when grown without Born application (743 kg/ha). In case of Netrakona, the highest seed of mustard was also observed from Improved Tori-7 when grown under 1.5 kg B/ha (867 kg/ha) but the lowest from BARI Sarisha-9 when grown without Boron fertilizer (600 kg/ha). The overall yield of mustard at Netrakona was much lower than Mymensingh sadar because the crop was seriously damaged by unusual excessive rainfall during 8 and 9th November 2002. That rain could not affect Mymensingh sadar's plot because Mymensingh sowing was 6 days earlier than Netrakona.

Economic performance: The cost and return analysis shows that the application of 1.0 and 2.0 kg B/ha were undominated and discarded from economic study. The MRR (%) of 0.5 kg B/ha (1041% and 310% are Mymensingh and Netrakona respectively). The maximum gross margin (Tk. 23899/ha) was recorded from 1.5 kg B/ha at Mymensingh while 1.0 kg B/ha gave maximum gross margin at Netrakona.

Treatment	No. of plant m ⁻²	Plant height (cm)	No. of pod plant ⁻²	No. of seed pod ⁻¹	Grain yield (kg ha ⁻¹)	Stover yield (kg ha ⁻¹)
Variety						
V_1	138a	102b	47.7b	14.1a	1097	2007
V_2	130b	108a	59.6a	13.9a	1080	1923
V_3	141a	103b	42.7b	13.2b	1035	2180
Boron doses (kg	ha ⁻¹)					
B_1	142a	101	42.8b	12.8b	887c	1889
B_2	134bc	101	50.0ab	13.9a	1078b	2039
B_3	135а-с	106	51.2ab	13.9a	1078b	1978
\mathbf{B}_4	140ab	108	50.0ab	14.4a	1189a	2128
B_5	130c	103	55.8a	13.8a	1122ab	2150
Variety x Boron	doses (kg ha	-1)				
$V_1 \ge B_1$	142	97	37.3f	13.1de	1017cd	2117ab
$V_1 \ge B_2$	146	102	39.2ef	14.1a-d	1017cd	1933ab
$V_1 \ge B_3$	135	102	54.0b-e	14.3a-c	1117а-с	2033ab
$V_1 \ge B_4$	137	104	48.1c-f	15.1a	1217a	2083ab
V1 x B5	130	103	59.8а-с	13.8b-d	1117а-с	1967ab
$V_2 \ge B_1$	142	105	53.4b-e	13.1de	900de	1600b
$V_2 \ge B_2$	111	108	69.5a	14.4ab	1133а-с	2133ab
$V_2 \ge B_3$	131	108	57.1a-d	13.8ab	1033b-d	1933ab
$V_2 \ge B_4$	141	111	50.1c-f	14.3a-c	1200ab	1900ab
$V_2 \ge B_5$	124	107	67.8ab	14.3а-с	1133ac	2050ab
V ₃ x B ₁	141	101	37.8f	12.3с-е	743e	1950ab
$V_3 \ge B_2$	144	94	41.3ef	13.3de	1083а-с	2050ab
V ₃ x B ₃	139	110	42.4d-f	13.5b-d	1083а-с	2067ab
V3 x B4	141	110	52.0c-f	13.7b-d	1150а-с	2400a
V3 x B5	138	99	39.8ef	13.3с-е	1117а-с	2433a
CV (%)	5.4	4.0	17.8		10.2	17.2

Table 1. Yield and yield parameters of some short duration mustard varieties as influenced by various doses of boron fertilizer at Mymensingh sadar Upazila (2002-03)

Note: V_1 = Improved Tori-7, V_2 = BARI Sarisha-9 & V_3 = BARI Sarisha-12 B₁ = 0 kg B/ha, B₂ = 0.5 kg B/ha, B₃ = 1.0 kg B/ha, B₄ = 1.5 kg B/ha and B₅ = 2.0 kg B/ha

Table 2. Yield and yield parameters of some short duration mustard varieties as influenced by various doses of boron fertilizer at Netrakona MLT site, Mymensingh (2002-03)

Treatment	No. of plant m ⁻²	Plant height (cm)	No. of pod plant ⁻²	No. of seed pod ⁻¹	Grain yield (kg ha ⁻¹)	Stover yield (kg ha ⁻¹)
Variety						
V_1	99	71	42.8a	11.1	753a	1640
V_2	119	72	34.8b	10.5	683b	1507
V_3	102	77	37.9b	10.5	678b	1630
Boron doses (kg h	a ⁻¹)					
\mathbf{B}_1	95	72	38.0b	10.6	644b	1478
B_2	112	73	35.4bc	10.9	706ab	1583
B ₃	101	77	51.1a	10.5	730a	1650
\mathbf{B}_4	112	73	36.0bc	11.1	728a	1589
B 5	114	71	32.0c	10.3	717ab	1661

Treatment	No. of plant m ⁻²	Plant height (cm)	No. of pod plant ⁻²	No. of seed pod ⁻¹	Grain yield (kg ha ⁻¹)	Stover yield (kg ha ⁻¹)
Variety x Boron d	loses (kg ha ⁻¹)					
$V_1 \ge B_1$	96	66	44.4b	11.1ab	683bc	1550a-c
$V_1 \ge B_2$	102	69	39.1b-d	11.4ab	700bc	1450bc
$V_1 \ge B_3$	93	77	65.9a	10.9ab	767ab	1817a
$V_1 \ge B_4$	110	74	39.9b-d	11.8a	867a	1767ab
$V_1 \ge B_5$	95	67	24.5f	10.3ab	717bc	1617a-c
$V_2 \ge B_1$	101	71	32.2d-f	10.3ab	600c	1333c
$V_2 \ge B_2$	126	72	33.7с-е	10.7ab	718bc	1700ab
$V_2 \ge B_3$	119	76	41.4bc	9.9b	733а-с	1567а-с
$V_2 \ge B_4$	113	67	27.3ef	10.8ab	650c	1317c
$V_2 \ge B_5$	134	73	39.0b-d	10.7ab	717bc	1617a-c
$V_3 \ge B_1$	88	79	37.2b-d	10.3ab	650c	1550a-c
$V_3 \ge B_2$	108	77	33.2c-f	10.7ab	00bc	1600a-c
V ₃ x B ₃	91	76	45.8b	10.8ab	660c	1567а-с
V3 x B4	113	79	40.7b-d	10.8ab	667bc	1683ab
V3 x B5	112	74	32.5c-f	10.0b	717bc	1750ab
CV (%)	8.4	8.7	14.2	9.7	11.4	13.1

Table 2. Contd.

Note: $V_1 =$ Improved Tori-7, $V_2 =$ BARI Sarisha-9 & $V_3 =$ BARI Sarisha-12 B₁ = 0 kg B/ha, B₂ = 0.5 kg B/ha, B₃ = 1.0 kg B/ha, B₄ = 1.5 kg B/ha and B₅ = 2.0 kg B/ha

Table 3.	Cost and return	analysis of diffe	erent doses of l	Boron on yield	of Mustard at	Mymensingh and
	Netrakona					

Gross return (Tk./ha)	Cost of Boron (Tk./ah)	Gross margin over boron (Tk./ha)	Marginal gross margin (Tk./ha)	Additional cost of Boron (Tk./ha)	MRR (%)	
Mymensingh						
18685	0	18685	2280	215	10/1	
22280	315	21965	3280	515	1041	
22549	630	21919	1080	215	620	
24844	945	23899	1980	515	029	
23515	1260	22255	-	-	-	
Netrakona						
13619	0	13619	078	215	310	
14912	315	14597	978	515	510	
15425	630	14795	198	315	63	
15355	945	14410	-	-	-	
15171	1260	13911	-	-	-	
Location: Palima, Tangail

Effect of variety: The significant effect was found on plant height. Statistically identical plant height was produced by BARI Sarisha-9 and BARI Sarisha-12 but differed with Tori-7. Yield contributing characters such as no. of branch, no. of siliqua, length of siliqua no. of seed, 1000- seed wt. and days to maturity did not show any significant effect among the varieties. Higher yield (0.98 t/ha) was observed with BARI Sarisha-9 which was followed by BARI Sarisha-12.

Effect of Boron: Boron level significant effect on no. of siliqua, length of siliqua and grain yield and bio-mass (Table 1) .It was observed that the number of siliqua and length of siliqua produced significant variations among the different levels of B. Highest no. of siliqua (42.66/p) and length of siliqua (4.66 cm) was obtained with 1.00 kg B/ha.

Grain and bio-mass yield produced significant variations among different levels of boron. Highest grain yield (0.99 t/ha) was obtained with 1.0 kg B/ha but statistically similar to 1.5, 2.0 and 2.5 kg B/ha. Variation was observed only in control plot. Similar trend was also observed in biomass production.

Interaction effect of variety and boron: Interaction effect was found significant except 1000 grain wt and days to maturity. The highest plant height was obtained with BARI Sarisha 9 with 1.00 kg B /ha. The highest number of branch was found with the combination of BARI Sarisha 12 with 2.0 kg /ha. Number of siliqua / plant was the highest with BARI Sarisha 9 and 1.0 kg B/ha. Length of siliqua was the highest with the combination of BARI Sarisha 12 and B level 1.0 kg/ha .Significant variation was observed in grain yield and bio-mass yield. From the interaction effect it was found that BARI Sarisha 9 and B level 1.00 kg/ha performed best among the varieties and B levels. Similar results also reported in last year. (2001-02). Grain yield was higher in variety BARI Sarisha 9 with 0.5 to 2 kg B/ha which is similar to BARI Sarisha 12 with 1 to 2.5 kg B/ha.

Conclusion

The above result suggests that boron should be applied along with other fertilizers for the AEZ-8 area of Tangail.

Variety	Days to maturity	Plant height (cm)	No. of bra./Pt.	No. of siliqua./pt	Length of siliqua. (cm)	N0. of seed/sili.	1000 grain wt.(g)	Grain yield (t/ha)	Bio-mass yield (t/ha)
Tori-7	85	88 .72	3.65	33.06	3.91	9.64	2.63	0.84	2.91
BARI Sarisha-9	87	100.8	4.15	39.51	4.44	11.12	4.02	0.98	3.11
BARI Sarisha-12	85	100.8	4.16	38.41	4. 57	11.24	2.89	0.97	3.08
LSD(0.05)	3.53	4.69	0.777	15.56	0.812	1.82	3.03	0.13	0.416
CV (%)	0.05	4.18	11.56	12.88	8.67	15.87	2.39	5.99	8.43
Boron Level(kg/ha)									
0.00	86	95.51	4.10	33.58	4.12	9.84	2.74	0.83	2.91
0.50	86	94.49	3.84	31.64	4.17	10.00	2.77	0.92	3.25
1.00	86	97.67	4.20	42.66	4.66	11.56	2.72	0.99	3.04
1.50	86	97.36	4.02	39.02	4.32	11.00	2.73	0.96	3.00
2.00	86	97.20	4.04	39.00	4.35	10.51	2.73	0.95	2.92
2.50	86	98.20	3.73	36.04	4.22	11.11	3.16	0.94	3.08
LSD(0.05)	0.04	3.88	0.444	4.58	0.36	1.63	10.31	0.05	0.247
CV (%)	0.05	4.18	11.56	12.88	8.67	15.87		5.99	8.43

Table 3. Main effect of boron level and variety on the performance of mustard, 2002-03 at Palima, Tangail

Variaty y	Days	Plant	No. of	No. of	Length	N0. of	1000	Grain	Bio-mass
Vallety X	to	height	NU. 01	Siliq./	of siliq.	seed	grain wt. (yield	yield
Dievei	maturity	(cm)	DI./Pl.	pt	(cm)	/sili.	g)	(t/ha)	(ť/ha)
Tori-7									
0.0	85	89.13	3.47	29.13	3.87	8.80	2.60	0.77	2.86
0.5	85	85.87	3.47	26.53	3.97	9.13	2.64	0.83	3.43
1.0	85	88.93	4.27	39.93	4.05	11.60	2.66	0.87	2.97
1.5	85	89.40	3.60	33.73	3.75	9.53	2.62	0.83	2.75
2.0	85	87.13	3.47	33.67	3.95	9.60	2.65	0.87	2.63
2.5	85	91.87	3.67	35.33	3.94	9.20	2.61	0.86	2.85
BARI Sarisha-9									
0.0	87	97.27	4.43	34.63	4.45	10.50	2.72	0.87	2.82
0.5	87	97.73	3.80	33.27	4.43	10.50	2.68	0.98	3.35
1.0	87	106.40	4.20	50.30	4.92	11.10	2.66	1.07	3.17
1.5	87	101.70	4.27	43.93	4.46	11.70	2.68	1.03	3.29
2.0	87	102.40	4.13	35.73	4.22	11.30	2.68	0.99	3.00
2.5	87	100.10	4.03	39.20	4.20	11.70	2.70	0.95	3.06
BARI Sarisha-12									
0.0	85	100.10	4.40	36.97	4.11	10.27	2.86	0.84	3.06
0.5	85	99.87	4.27	35.13	4.13	10.33	2.90	0.95	2.97
1.0	85	97.67	4.13	37.73	5.03	12.00	3.00	1.02	3.00
1.5	85	101.00	4.20	39.40	4.76	11.73	2.86	1.01	2.98
2.0	85	102.10	4.53	47.60	4.89	10.67	2.86	1.01	3.14
2.5	85	102.40	3.47	33.60	4.55	12.47	2.89	1.00	3.33
LSD(0.05)	0.074	6.73	0.769	7.995	0.6239	2.823	5.473	0.091	0.428
CV (%)	0.05	4.18	11.56	12.88	8.67	15.87	10.31	5.99	8.43

Table 4. Interaction effect of boron level and variety on the performance of Mustard during 2002-03 at Palima, Tangail

Appendix table 1. Initial status of soil at Mymensingh

Samples	pН	OM (%)	Total N	P (ppm)	K (meq	S (ppm)	Zn	B (ppm)
			(%)		100 ⁻¹ g)		(ppm)	
M-72	6.9	1.92	0.07	1.57	0.06	5.96	3.3	0.23
Interpretation	-	-	V. L.	V. L.	V. L.	V. L.	Н.	V. L.
M-97	6.1	1.34	0.08	4.56	0.16	9.52	2.2	0.13
Interpretation	-	-	L.	V. L.	М.	V. L.	Н.	L.

V.L.=Very Low, L.=Low, M.=Medium, H.=High, V.H.=Very High

Note: M-72 and M-97 soil samples from Netrakona and Mymensingh respectively

Appendix table 2. Initial soil analysis value at Tangail

DU	OM	Total N		µg/g			K
111	(%)	(%)	Р	S	Zn	В	(meq/100 g)
6.0	1.22	0.08	3.04	16.44	0.76	0.16	0.05
Slightly acidic	Low	Very low	Very low	Medium	Low	Low	Very low

EFFECT OF DIFFERENT LEVELS OF BORON ON THE PERFORMANCE OF PAPAYA

Abstract

The experiment was conducted at MLT site Modhupur, Tangail during 2002-2003 to evaluate the response of boron application on Papaya (cv. Shahi) and to find out an optimum dose of boron for Tangail. Six boron levels viz. 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 kg B / ha were tested. The experiment was laid out in a randomized block design with six dispersed replications. The yield of fruit was influenced by the application of boron fertilization. The highest fruit yield was recorded from the application of 20. kg/ha of B, however, it was also identical to 2.5 and 1.5 kg/ha of B as well. The lowest yield was (40.81 t/ha) obtained from control plot. Individual fruit weight, fruit yield/plant and other yield attributes almost follow the same trend.

Introduction

Papaya (*Carica papaya* L.) is nutritional and rich quick growing fruit in Bangladesh. It can be eaten as fruit and also used as vegetables. Bangladesh produces 39,000 tons of papaya from an area of about five thousand hectares of land having an average yield of 7.80 t/ha (BBS, 1998), which is the lowest among the papaya growing countries of the world. This is due to the poor management practices and imbalanced fertilization of the crop. Both macro-and micro- nutrients have important role on the production of papaya (Lokhande and Moghe, 1991). Papaya is intensively grown in Modhupur Tract under AEZ 28.Boron deficiency has an effect on papaya production. Soil test value indicated that Modhupur tract is low (0.06 ppm) in boron. Due to boron deficiency Papaya was deformed in shape and size. But farmers do not use boron fertilizer for papaya cultivation. As a result farmers are not getting full benefit from papaya cultivation. It is known that boron is the important factor for attractive shape, size and quality for Papaya, which can be also increased yield, quality and production of Papaya. Hence, the study was undertaken with the objectives to observe the response of papaya to added boron and to find out the optimum dose of boron for Papaya cultivation.

Materials and Methods

The trial was carried out in Multilocation Testing site, Modhupur, Tangail during 2002-03 to evaluate the response of boron on papaya (cv. Shahi). Before conducting the field experiment soil samples were collected from experimental plot and its chemical analysis was done. Data indicate that p^{H} of the oil sample was acidic (5.0), organic matter content was low (1.12), total N (%) was low(0.10),P was very high(74.63µg/g),K was medium (0.19meq/100g) and B was very low (0.06µg/g) in Table 2. The experiment was laid out in a randomized complete block design having seven treatments replicated in 4 times. Boron levels were 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 kg/ha applied from boric acid. A blanket dose of 622-221-562-110-136 NPKSZn kg/ha was also applied (Technology Hand Book, BARI, 2002) .Full dose of TSP was applied during the final land preparation. One half of potassium and full dose of boron mixed well with soil applied in hole .One half of the urea and one fourth of potassium were applied around the young plant and covered with soil at two months after planting. The remaining nitrogen and potassium were applied around the young plant and covered with soil at four months after planting. Each plot measured 10 m x 8 m with 1 m drain between plots. Two month old seedlings were transplanted in 7th March, 2002 with a spacing of 3 m x 2m in between rows plants.

Four weeding, two irrigations and three times earthing up were done during the crop growth. Borthomixture and Dithane M-45(0.2%) were sprayed three times as preventive and plant protection measures for root rot and pests. Harvesting started from 2nd week of November and continued up to March /2003. Data on plant height, fruits per plant, fruit size and weight, yield per hectare were recorded and were analyzed statistically. Duncan's Multiple Range Test (DMRT) was used to determine the significant differences among the treatments.

All the studied characters were significantly influenced by the application of B. The tallest plant (185.7 cm) was obtained from T_5 , though superior to other treatments but did not differ significantly except control. The smallest plant height (180.6 cm) was obtained from control. The no. of fruit increased with the increase of B level up to 2.0 kg/ha than decreased gradually (Table 1). The highest number of fruits/plant (23.08) was obtained from B level 2.0 kg/ha, which was significantly different from others. Control produced the lowest number of fruits. The highest length (20.52 cm) of fruit was recorded in T_5 which was statistically identical with T_4 and T_6 but significantly differed with others. The minimum length (16.33 cm) was obtained from control. Similar trend was also observed in fruit breath. The highest breath (40.58 cm) of fruit was recorded from T_5 and the lowest breath (35.33 cm) in control .The fruit weights were significantly improved with the application of boron. Weight of fruit increased with the increased of boron level up to 2kg/ha than gradually decreased. The highest fruit weight (1.13 kg) was obtained with the treatment T_5 which was statistically significant with T_1 , T_2 and T_3 but identical with T_4 and T_6 . The lowest fruit weight (0.91 kg) was obtained from control.

The yield of fruit was influenced by the application of boron fertilization. The lowest yield was (40.81 t/ha) obtained from control plot. The higher fruit yield was obtained from treatment T_5 i.e.2 kg B/ha which was statistically identical to T_4 and T_6 .

From the study, it can be concluded that boron level 2.0 kg/ha along with a blanket dose of 622-221-562-110-136kg NPKSZn/ha may be optimum for the production of papaya (cv. Shahi) in Modhupur Tract. The experiment should be continued two or three year for final conclusion and recommendation.

Farmers' reaction

- 1. Farmers' were interested to apply boron for papaya production
- 2. Uniform shape and sized of papaya was better in case of boron use.

References

BBS, 1998. Statistical Pocket Book. Bangladesh Bureau of Statistics. Ministry of Planning, Govt. of People's Republic of Bangladesh, Dhaka

- Lokhande, N.M. and P.G. Moghe.1991.Nutrients and hormonal effect on growth promotion and productivity in ring spot infected papaya crop. South India Hort.39(1): 23-26
- Table 1. Yield and yield contributing characters of papaya (cv. Shahi) as influenced by different levelsof boron at MLT site, Modhupur, Tangail during 2002-03

Treatment (B kg/ha)	Plant height (cm)	Number of fruits /plant	Length of fruit (cm)	breath of fruit (cm)	wt. of fruit (kg)	Wt. of fruit (kg)/ plant	Yield (t/ha)
$T_1(0)$	180.6b	16.38c	16.33d	35.33c	0.91d	16.63c	40.81d
$T_2(0.05)$	182.2ab	19.38b	17.07cd	35.90c	0.99c	18.56c	48.58c
$T_3(1.0)$	183.7ab	20.23b	18.48bc	37.28bc	1.06b	20.99b	53.70bc
$T_4(1.5)$	183.4ab	21.08b	19.58ab	38.83ab	1.09ab	22.62ab	56.92ab
$T_5(2.0)$	185.7a	23.08a	20.52a	40.58a	1.13a	23.77a	61.44a
$T_6(2.5)$	184.0ab	20.45b	19.05ab	39.25ab	1.10ab	22.14ab	55.97ab
$T_7(3.0)$	181.9ab	19.38b	18.13bc	38.1b	1.07ab	20.99b	52.44bc
CV%	1.50	5.92	5.30	3.74	3.88	6.43	7.03

Means followed by same letter is not significantly different at 5% level by DMRT.

Appendix table 1.Initial soil test values of the experimental plots at Modhupur, Tangail

Crop	\mathbf{P}^{H}	O.M	Total N (%)	P(ug/g)	K(meq/100g)	S(ug/g)	Zn(ug/g)	B(ug/g)
Papaya	5.0	1.12	0.10	74.63	0.19	36	1.52	0.06
	acidic	low	low	very high	medium	high	optimum	very low

EFFECT OF BORON ON YIELD OF THREE WHEAT VARIETIES UNDER OLD BRAHMAPUTRA FLOODPLAIN SOILS OF AEZ 9

Abstract

A field experiment was conducted at Mymensingh Sadar MLT site during rabi season of 2002-03 to evaluate the effect of boron on the growth and yield of wheat and identify a most suitable dose of boron as well as suitable Wheat variety under Old Brahmaputra Floodplain soils of Bangladesh (AEZ 9). Three varieties of BARI released wheat viz. Kanchan, Protiva and Sourav with three doses of boron such as 0, 1.0, and 2.0 kg B ha⁻¹ were tested. Application of boron significantly influenced plant height, number of spike per plant, number of grain per spike and yield of grain as well as straw of Wheat. The highest grain yield was obtained from 1.0 kg B ha⁻¹ (4.18 t/ha) which was statistically similar with 2.0 kg B/ha (3.97 t/ha) but it was differed from the yield of without B treatment (3.56 t/ha). Regarding variety significantly higher yield was recorded from Sourav. From interaction table it was found that variety Sourav along with B @ 1.0 kg/ha produced significantly higher grain yield over other combinations.

Introduction

In general wheat needs higher requirement fertilizers especially nitrogenous and boron and they are not responding positively with lower supply, and severe deficiency may result poor yield. Wheat is the second important cereal in Bangladesh. The average yield of wheat per unit area in Bangladesh is very low compared with other wheat producing countries. It has been identified that micro-nutrient deficiency problem on many crops have been warranted due to intensive cropping with rice and other crops. The practice of intensive cropping with modern varieties causes a dramatic depletion of inherent nutrient reserves of some other nutrients such as S, Zn and B are being observed in many parts of the country. In Mymensingh greater district, organic matter and boron content of the soil is poor for which results poor yield of wheat. The application of Boron in conjugation with Sulphur caused a certain percent increased yield of wheat. The present investigation was, therefore, undertaken to evaluate the effect of boron on the growth and yield performance of wheat and to find out the suitable boron fertilizer dose for wheat in Old Brahmaputra Floodplain soil. The main objectives were; to identify the optimum dose of Boron for wheat production in that area and to observe the yield potentiality of newly BARI released wheat varieties in that location.

Materials and Methods

The experiment was conducted at Mymensingh sadar Upazila during rabi season of 2002-03. The experiment was laid out in randomized complete block design with 3 replications. The factorial RCB design was followed where three varieties (KANCHAN, PROTIVA and SOURAV) and three Boron doses (0, 1.0, and 2.0 kg B ha⁻¹) were combined and assigned as random.

Initial soil samples were collected from both locations and analyzed for chemical characteristics of soil (Appendix Table 1) following standard methods. The plot received NPKS fertilizer as a blanket dose. The plot was fertilized by the application of 100, 26, 34, and 21 kg N, P, K, and S, ha⁻¹ as a source of urea, TSP, MP and gypsum respectively. Boric acid (ALPHA BORON) was used as the source of boron. Full amount of P, K, S, and B and half of N were applied as basal. Rest half was applied as top dress after 23 and 40 days of sowing. Recommended seed rate (150 kg ha⁻¹) were sown as broadcast method on November 30, 2002. The crop was harvested on March 16, 2003. Data on plant height, spikelet per spike, grain per spike, grain and straw yield were recorded and the data were analyzed by using a suitable package (MSTAT) following ANOVA technique. The differences among the treatment means were evaluated by least significant difference (LSD).

Results and Discussion

Effect of Variety: The yield components and grain yield of wheat as influenced by different varieties were statistically significant but straw yield was not significantly differed among each other (Table 1). On the other hand, number of spikelet spike⁻¹ was statistically identical among the varieties. The

variety Sourav (4.14 t/ha) out yielded over other tested varieties such as Kanchan yielded 3.74 t/ha while Protiva gave 3.82 t/ha grain yield.

Effect of Boron: Plant height, number of spikelet per spike, number of grain per spike, grain and straw yield were significantly influenced by the application of Boron fertilizer (Table 1). It is observed from Table 1 that all boron applied treatment significantly gave maximum number of spikelet per spike, number of grain per spike, grain and straw yield. The highest number of spikelet per spike (16.3) was found from 1.0 and 2.0 kg B/ha plots. In the same way maximum number of grain per spike (32.7) was also found from the Boron applied treatments. The highest grain yield was obtained from 1.0 kg B ha⁻¹ (4.18 t/ha) which was statistically similar with 2.0 kg B/ha (3.97 t/ha) but it was differed from the yield of without B treatment (3.56 t/ha). In the same way, the highest straw yield was obtained from 1.0 kg B ha⁻¹ (4.27 t/ha) which was statistically similar with 2.0 kg B/ha (7.19 t/ha) but it was differed from the yield of without B treatment (6.43 t/ha).

Interaction between Variety and Boron: The interaction effect of Boron and variety were statistically significant (Table 1). The highest grain yield of wheat was recorded where Sourav was grown with 1.0 kg B/ha (4.50 t/ha) and the lowest from Kanchan when grown without Born application (3.48 t/ha). The overall yield of wheat at was good and farmers were impressed to see the yield potentiality of wheat in that area.

Economic performance: The cost and return analysis shows that the application of 2.0 kg B/ha was undominated and discarded from economic study. The MRR(%) of 1.0 kg B/ha (754%). The maximum gross margin (Tk. 36445/ha) was recorded from 1.0 kg B/ha plot (Table 2).

Variety	No. of Spike m ⁻²	Plant height (cm)	No. of spikelet spike ⁻¹	No. of grain spike ⁻²	Wt. of 1000- grain (g)	Grain yield (t ha ⁻¹)	Straw yield (t ha ⁻¹)
Variety							
V ₁	318	97.4a	16.1	32.4	44.3ab	3.74b	7.02
V_2	316	95.3a	15.7	31.5	42.3b	3.82b	6.82
V_3	316	90.9b	15.9	32.0	44.7a	4.14a	7.05
Boron doses	(kg ha ⁻¹)						
B_1	322	92.0b	15.2b	30.5b	44.0	3.56b	6.43b
\mathbf{B}_2	313	96.8a	16.3a	32.7a	44.0	4.18a	7.27a
B_3	316	94.8ab	16.3a	32.7a	43.3	3.97a	7.19a
Variety x B	oron doses						
$V_1 \times B_1$	320	95.7ab	16.2ab	32.4ab	43.7ab	3.48e	6.64ab
$V_1 \ge B_2$	312	100.7a	16.2ab	32.7ab	44.7a	4.02bc	7.55a
$V_1 \ge B_3$	323	95.8ab	16.0ab	32.1abc	44.7a	3.72cde	6.88ab
$V_2 \ge B_1$	322	94.1b	14.9bc	29.9bc	43.3ab	3.56de	6.37ab
$V_2 \ge B_2$	316	94.9ab	16.0ab	32.1ab	43.3ab	4.01bc	6.77ab
$V_2 \ge B_3$	311	96.9ab	16.3ab	32.5ab	40.3b	3.90bcd	7.31ab
V ₃ x B ₁	323	86.3c	14.3c	29.1c	45.0a	3.63cde	6.27b
$V_3 \ge B_2$	311	94.7ab	16.6a	33.4a	44.0ab	4.50a	7.49a
V ₃ x B ₃	313	91.7bc	16.7a	33.6a	45.0a	4.29ab	7.39ab
CV (%)	4.6	3.7	5.6	5.5	5.1	5.9	10.1

Table 1. Yield and yield parameters of some wheat varieties as influenced by various doses of boron fertilizer at Mymensingh sadar MLT site (2002-03)

Note : $V_1 = Kanchan$, $V_2 = Protiva$ and $V_3 = Sourav$

 $B_1 = 0 \text{ kg B/ha}$, $B_2 = 1.0 \text{ kg B/ha}$, and $B_3 = 2.0 \text{ kg B/ha}$

Treatment (B kg/ha)	Gross return (Tk./ha)	Cost of Boron (Tk./ha)	Gross margin over Boron (Tk./ha)	Marginal gross margin (Tk./ha)	Additional cost of Boron (Tk./ha)	MRR (%)
B_1	31695	0	31695	4750	630	754
\mathbf{B}_2	37075	630	36445			
B ₃	35355	1260	34095			

Table 2. Cost and return analysis of different doses of Boron on yield of Wheat at Mymensingh sadar during 2002-03

Appendix table 1. Initial status of soil samples

pН	OM	Total	Р	K (meq	S	Zn	В
	(%)	N (%)	(ppm)	100 ⁻¹ g)	(ppm)	(ppm)	(ppm)
6.1	1.22	0.12	1.55	0.12	14.28	3.0	0.26
-	-	L.	V. L.	L.	L.	Н.	L.
	рН 6.1	pH OM (%) 6.1 1.22	pH OM (%) Total N (%) 6.1 1.22 0.12 - - L.	pH OM (%) Total N (%) P (ppm) 6.1 1.22 0.12 1.55 - - L. V. L.	pH OM (%) Total N (%) P (ppm) K (meq 100 ⁻¹ g) 6.1 1.22 0.12 1.55 0.12 - - L. V. L. L.	pH OM (%) Total N (%) P (ppm) K (meq 100 ⁻¹ g) S (ppm) 6.1 1.22 0.12 1.55 0.12 14.28 - - L. V. L. L. L.	pH OM (%) Total N (%) P (ppm) K (meq 100 ⁻¹ g) S (ppm) Zn (ppm) 6.1 1.22 0.12 1.55 0.12 14.28 3.0 - - L. V. L. L. H.

V.L.=Very Low, L.=Low, M.=Medium, H.=High, V.H.=Very High

EFFECT OF N SOURCE ON T.AUS AND T.AMAN RICE IN GANGES TIDAL FLOOD PLAIN ZONE (AEZ-13)

Abstract

The experiment was conducted at FSRD site, Lebukhali, Patuakhali in 2002 to find out suitable source of N fertilizer for higher yield and N use efficiency. The result of one year experiment reveals that in case of T.Aus statistically identical yield was obtained from urea mega granule (UMG), urea super granule (USG) and prilled urea but in case of T.Aman the highest grain yield was obtained from prilled urea. Application of granular urea instead of prilled urea did not show any significant effect on T.Aus and T.Aman rice at Lebukhali, Patuakhali.

Introduction

The efficiency of nitrogen as urea is very less in T.Aus and T.Aman rice in Ganges Tidal Floodplain (AEZ 13). One of the reasons for less efficiency is assumed that it might be lost due to field inundation and water receding effect by tidal water. Therefore, response of T.Aus and T.Aman rice to nitrogen is very less. But recently, in our country different types of fertilizer materials are becoming available in the market. Urea super granule (USG) is one of the popular nitrogenous fertilizer which is now available in the market and the farmers are already using in the Boro rice. Farmers' are now also using it in different upland vegetables and crops such as, Brinjal, Cabbage, Cauliflower, Banana etc. The efficiency of nitrogen as USG is higher than prilled urea. Therefore, deep placement of granular form of nitrogen (USG & UMG) might increase the nitrogen use efficiency by crops and thereby increased crop yield in Ganges Tidal Floodplain (AEZ). With this view the experiment was carried out to evaluate N use efficiency by using granular urea in T.Aus and T.Aman.

Materials and Methods

The experiment was conducted at FSRD site, Lebukhali, Patuakhali in 2002. Four treatments of different sources of N with five dispersed replication was set in RCB design. Three different sources of N fertilizers viz. UMG, USG and prilled urea were tested along with control. The rate of N was 80 kg/ha. Other fertilizer was applied as per FRG'97. One UMG was applied for four hills and one USG was applied for two hills. Prilled urea was applied half as basal dose and half as top dress. About 30-35 days old seedling was transplanted with a spacing 25 x 15 cm for T.Aus and 30 x 20 for T.Aman. All other intercultural operation was done as required.

Result and Discussion

T.Aus

Grain yield of T.Aus rice did not vary significantly due to different sources of N except with no fertilizer treatment. The efficiency of granular urea over prilled urea was not evident. Panicles/m², filled grain /panicle and 1000 seed weight also showed similar result.

T.Aman

In T.Aman rice significantly higher grain yield was obtained from prilled urea. Granular urea failed to show significant response over prilled urea. However, panicles/m2, filled grain/panicle and 1000-grain weight did not vary significantly among the different sources of N fertilizer. Yield obtained from USG and UMG was statistically identical.

However, this is the result of 1st year only and the experiment should be continued for another two years for confirmation of the findings.

Treatment	Daniele/m ²	Filled grain/	Unfilled grain/	1000 grain	Grain yield
	r annene/m	panicle	panicle	weight (gm)	(kg/ha)
Urea Mega Granule	145a	95a	12	28.8a	3982a
Urea Super Granule	148a	92a	10	28.8a	3810a
Normal Urea	147a	94a	9	28.8a	3920a
Control	131b	72b	15	27.5b	2620b
CV (%)	4.51	6.02		0.76	8.11

Table 1. Effect of N source on yield and yield contributing characters of T.Aus at Lebukhali, Patuakhali during 2002

Table 2. Effect of N source on yield and yield contributing characters of T.Aman at Lebukhali, Patuakhali during 2002

Treatmont	Daniala/m ²	Filled grain/	Unfilled grain/	1000 grain	Grain yield
Treatment	Famele/m	panicle	panicle	weight (gm)	(kg/ha)
Urea Mega Granule	162b	72a	14	30.1a	3446b
Urea Super Granule	163b	74a	13	30.0b	3570b
Normal Urea	177a	76a	11	30.3a	3720a
Control	149c	63b	17	28.4c	2642c
CV (%)	7.52	4.83		2.01	11.99

STUDY ON THE PERFORMANCE OF WHEAT VARIETIES DEVELOPED BY BARI

Abstract

On-farm performance of wheat varieties was evaluated at Gangni and Gabtali multilocation testing sites during rabi seasons of 2001 to 2003 to find out suitable variety of wheat. Five varieties viz. Satabdi, Protiva, Gourab, Sourav and Kanchan were evaluated in RCB design with three dispersed replication in each site. Results revealed that Satabdi produced significantly highest yield at both sites, which was 9-13% higher yield than Kanchan at Gagni and 21% at Gabtali, which is currently used by the farmers.

Introduction

Wheat is successfully grown in about 18000 ha area in Meharpur and Chuadanga district. These are the most potential area for wheat cultivation. Wheat is grown in this area intensively following the improved cropping pattern Wheat-Jute /Aus-T.Aman rice. But most of the farmers use the variety Kanchan at all sites. The yield of Kanchan is decreasing gradually. Recently the Wheat Research Center (WRC) of BARI has developed four new varieties with considerable yield advantage over Kanchan. It is therefore necessary to test the performance of these new varieties against Kanchan for improvement of the cropping pattern.

Materials and Method

The experiment was conducted at Gangni MLT sites, Kushtia and Gabtali MLT sites, Bogra at the farmers' field in rabi season of 2002-03. The experiment was laid out in randomized complete design with six dispersed replications in each site. The tested varieties were Satabdi, Kanchan, Protiva, Sourav and Gourab. The seeds were sown in line at 20 cm apart. Sowing date was 22 Nov to 18 Dec. 2001& 2002 at Kushtia and 2-10 December '02 at Bogra. Fertilizer used at the rate of 120-60-40-20-5-1 kg N, P₂O₅, K₂O, S, Zn and B from urea, triple super phosphate, muriate of potash, gypsum zinc sulphate and boric acid and 5 ton cowdung per hectare. Full amount of P K S Zn and B and half of the urea was applied at the time of land preparation and the rest of the N was applied at first irrigation time. Three times irrigation was given. Plant protection measure was taken. The crop was harvested at 15-30 March, 2002 & 2003 at Kushtia and 15-26 March 2003 at Bogra. Necessary data were collected and analyzed.

Results and Discussion

Gagni MLT site, Kushtia

Grain/spike, spikes/m², grain and straw yields were significantly affected by variety in 2001-02 but similar trend was observed in 2002-03 except plant height and grain weight which was differ significantly. In 2001-02, Satabdi and Protiva showed identified grain/spike but Satabdi, Protiva and Gourab gave statistically similar spike/m². Grain weight was statistically at par but Satabdi showed higher grain weight. Significantly highest grain yield was obtained from variety Satabdi which might be due to higher no. of grains/spike and spikes/m². In case of straw yield, Satabdi and Protiva showed identical (Table 1).

During 2002-03, Crop duration took 15 days more in the year than previous year. Spikes/m² showed identical in variety Satabdi and Protiva and higher than other variety. No. of grains/spike were statistically identical is all varieties except Sourav which showed lower grains/spike. The higher grain weight was recorded from variety Satabdi which was at par to variety Protiva. Significantly highest grain yield was obtained from variety Satabdi which could be due to higher spikes/m2 and grain weight (Table 2). Similar trend was followed in case of straw. On an average, highest grain yield was recorded from variety Satabdi which was 9% higher yield than Kanchan which was currently used by the farmers.

Gabtali MLT sites, Bogra

Grain, straw yield and yield attributes were significantly influenced by variety. Higher no. of grains/spike was obtained from variety Akbar which was at par to Satabdi, Gourab and Sourab but grain weight showed higher in variety Gourab, Protiva and Sourab. Significantly highest grain yield was recorded from variety Satabdi which was 20% higher yield than Kanchan. Straw yield also showed higher from variety Satabdi but statistically identical to Sourab.

Farmers Reaction

In those five varieties, Satabdi is found better but in context of bread wheat but Protiva variety is more soft and tasty.

Variety	Crop duration (days)	Plant height (cm)	Spike/m ² (No.)	No. of grains /spike	1000- grain wt (gm)	Grain yield (t/ha)	Straw yield (t/ha)
Satabdi	102	107.3	353a	32a	45.00	4.57 a	6.64a
Protiva	102	107.3	349ab	32a	44.67	4.47 b	6.51ab
Gourab	100	104.3	337abc	31b	43.67	4.27 c	6.25bc
Sourav	100	104.3	328bc	30b	42.67	4.20 d	6.09cd
Kanchan	104	104.3	327bc	30b	42.67	4.00 e	6.00d
F-test	NS	NS	*	**	NS	**	**
CV (%)	2.0	2.5	1.8	2.1	2.0	0.7	1.5

Table 1. Yield and yield attributes of different wheat varieties at Gangni MLT site in 2001-02

Table 2. Yield and yield attributes of wheat varieties at Gangni MLT site in 2002-03

Variety	Crop duration (days)	Plant height (cm)	Spike/m ² (No.)	No. of grains /spike	1000- grain wt (gm)	Grain yield (t/ha)	Straw yield (t/ha)
Satabdi	117	103.4	326	31	46.33	4.58	6.96
Protiva	117	102.5	322	30	45.83	4.35	6.59
Gourab	114	101.6	308	30	45.17	4.08	6.41
Sourav	114	101.8	297	29	43.83	3.91	6.17
Kanchan	119	101.9	307	30	44.67	4.17	6.40
LSD (0.05)	NS	1.65	9.90	1.26	0.82	0.12	0.19
CV (%)	2.0	1.34	1.84	3.48	1.52	2.27	2.41

Table 3. Yield and yield attributes of wheat varieties at Gabtali MLT site, Bogra during 2002-03

Variety	Crop duration (days)	Plant height (cm)	No. of grains /spike	1000-grain wt (gm)	Grain yield (t/ha)	Straw yield (t/ha)
Satabdi	109a	92.72a	39a	40.88a	4.01a	5.33a
Protiva	105bc	82.70c	32b	37.36abc	3.08d	4.22b
Gourab	106b	84.88b	36ab	39.79ab	3.32bc	4.45bc
Sourav	104d	84.73b	37a	37.18bc	3.53b	4.95a
Kanchan	104cd	83.67b	36cd	34.78a	3.20c	4.20b
Akbar	105cd	10.28ab	39a	35.13c	2.90e	4.30b
F-test	*	*	*	*	*	*
CV (%)	1.09	4.35	9.67	8.16	5.39	7.09

PERFORMANCE OF DIFFERENT CHICKPEA VARIETIES

Abstract

An experiment was carried out at FSRD site Golapgonj, Sylhet and MLT site Moulvibazar to find out the yield and suitability of chickpea variety(s) after harvest of T.Aman rice. Six BARI developed Chickpea varieties (BARI Chola 2, 3, 4, 5, 6 & 7) were evaluated. On an average, BARI Chola-3 gave the highest yield, which attributed maximum pods/plant and relatively bigger seed size at Golapganj. Annigeri variety was used during 2002-03 at both the sites which performed better at Golapganj but BARI Chola-3 at Moulvibazar.

Introduction

Pulses can utilize limited soil moisture and nutrients more efficiently than cereal. A vast area of land remains fallow for a long time (December-May) after the harvest of aman rice due to moisture stress. Chickpea is a drought tolerant and deep rooted crop, so which can play a major role in acquisition of both water and nutrient from below the soil surface. In order to increase pulse production, chickpea may be introduced in the existing fallow period. Therefore, the present experiment was undertaken to find out the yield and suitability of chickpea variety(s) after harvest of T.Aman rice.

Materials and Methods

The experiment was conducted in rainfed condition at the FSRD site Golapgonj, Sylhet and MLT site Moulvibazar during the period from November, 2001 to March, 2003. Six chickpea varieties viz. BARI Chola-2, BARI Chola-3, BARI Chola-4, BARI Chola-5, BARI Chola-6 and BARI Chola-7 during 2001-02 and one more variety Annigeri in 2002-03 were used in the experiment. Treatments were arranged in the RCB design with three replications. The plot size was 4 m \times 3 m. Fertilizers were applied at the rate 20-40-20kg/ha of N, P₂O₅ and K₂ O, respectively. The seeds were sown on 25 November, 2001 at both sites and 2-8 December 2002 at FSRD, Golapganj and MLT site, Moulvibazar. Spacing was 40 cm \times 10 cm.

FSRD site, Golapganj, Sylhet

Results and Discussion

The results revealed that there were significant variations in all the characters under studied except seeds/pod. The days to maturity ranged from 114 DAS to 120 DAS. The earliest variety was BARI Chola-4 and BARI Chola-2. Significantly the highest pods/plant was recorded from BARI Chola-3 and the lowest from BARI Chola-4. There was no significant difference among the varieties in terms of seeds/pod. The highest seed weight recorded from BARI Chola-3 followed by Annigeri but minimum weight from BARI Chola-5 & 7.

Variety Annigeri showed the highest yield but statistically at par to BARI Chola-3. The highest seed yield might be due to maximum no. of pods/plant and 100- seed weight.

MLT site, Moulvibazar

Maturity, pods/plant, 100-seed weight and yields were significantly differed by variety. The longest duration was recorded from BARI Chola-3 and shorter from BARI Chola-2 and BARI Chola-4. The highest pods/plant was obtained from BARI Chola-3 followed by Annigeri. Seeds/pod was not influenced by variety. The variety Annigeri and BARI Chola-3 showed similar seed weight and higher yield than other varieties. Significantly the highest yield was recorded form BARI Chola-3 due to higher pods/plant and seed weight.

On an average of two years result showed that BARI Chola-3 gave higher yield at Moulvibazar but variety Annigeri gave higher yield during 2002-03 at Golapganj. So, the trial may be repeated from another year for confirmation.

Variety	Days to	Dod/plant	Saada/pad	100 seed	Yield (kg/ha)	
	maturity	rou/plain	Seeds/pou	wt (g)	2001-02	2002-03
Annigeri	120	34.63	1.24	17.1	-	1569
BARI Chola-2	114	25.40	1.19	14.9	856	920
BARI Chola-3	121	31.15	1.21	17.6	1406	1522
BARI Chola-4	114	21.03	1.19	13.1	782	766
BARI Chola-5	120	23.55	1.27	12.2	1010	863
BARI Chola-6	116	24.42	1.17	14.4	858	984
BARI Chola-7	119	22.25	1.21	12.3	702	779
LSD _{0.05}	1.96	2.49	NS	0.49	112.0	62.73

Table 1. Yield and yield contributing characters of seven chickpea varieties at FSRD site, Golapganj, Sylhet during rabi, 2002-03

Table 1. Yield and yield contributing characters of seven chickpea varieties at MLT Site, Moulvibazar during rabi, 2002-03

Variety	Days to maturity	Pod/plant	Seeds/pod	100 seed wt (g)	Yield (kg/ha)
Annigeri	119	35.96	1.27	17.65	1516
BARI Chola-2	115	22.05	1.21	14.23	892
BARI Chola-3	121	38.04	1.23	17.75	1605
BARI Chola-4	115	19.42	1.17	13.20	790
BARI Chola-5	121	21.99	1.24	12.26	654
BARI Chola-6	116	28.00	1.19	15.11	1014
BARI Chola-7	118	25.04	1.21	12.39	738
LSD _{0.05}	2.81	7.38	NS	1.93	32.05

INFLUENCE OF DIFFERENT TILLAGE METHODS ON THE PERFORMANCE OF CHICKPEA UNDER T.AUS-T.AMAN-FALLOW CROPPING PATTERN

Abstract

A field experiment was conducted at FSRD site Golapganj, Sylhet during rabi season 2001-03 to evaluate effect of tillage methods on two chickpea varieties in fallow period. Treatments included were (a) variety two: BARI Chola-2 and Annigeri in 2001-02 and one more variety BARI Chola-5 in 2002-03 and (b) tillage practice viz. conventional and deep. The variety Annigeri coupled with deep tillage produced the highest yield (1965 kg/ha). Deep tillage performed higher yield than that of conventional tillage. Tillage treatment did not show appreciable difference in soil moisture.

Introduction

In Bangladesh chickpea is grown primarily as a rainfed crop. The success of this crop depends on the exploitation of residual soil moisture. Farmers usually broadcast seeds, which leads to irregular germination due to less seed soil contact and soil moisture stress. Generally chickpea is often established with conventional tillage. In the Surma-Kushyara floodplain the soil is characterized by hard pan beneath the plough layer. In the post rainy season only the residual soil moisture above the plough pan is available for crop growth and at this situation soil water is limited to support the requirement of any crop. In this contest, breaking of plough pan might allow penetration of roots down the profile and thereby, allow extraction of greater volume of water and nutrient from the deeper zone. This study was undertaken to evaluate the feasibility of growing chickpea in post rainy season fallow period and to investigate the effect of tillage methods on two chickpea genotypes.

Materials and Methods

A field experiment was conducted at FSRD site, Golapganj, Sylhet during rabi season of 2001-03. There were two treatment viz. methods of tillage and varieties of chickpea in the experiment. Methods of tillage were conventional and deep. Conventional tillage was done by country plough while deep tillage was done by spading. About 7-8 cm deep ploughing was maintained by country plough but in case of deep ploughing 18-20 cm depth was maintained. Two varieties of chickpea BARI Chola-2 and Annigeri in 2001-02 and one more variety BARI Chola-5 in 2002-03 were used in the experiment. The experiment was conducted using a RCB (control) design with four replications. Unit plot size was 4 m \times 3 m. Spacing was 40 cm \times 10 cm. Fertilizer at the rate of 20-40-20-20 kg/ha of N, P₂O₅, K₂O and S was applied .The seed was sown on 29 November, 2001. The crop was grown under rainfed condition. The rainfall occurred during October and November, 2001 was 308.9 mm and 21 mm, respectively, where 68.2 and 132.2 mm in November 2002 and during crop growing period (December-March) was 83 mm in 2001-02 and 243.2 mm in 2002-03. Pod borer was minimized by spraying of insecticides and also by hand picking. Soil moisture was monitored by 10 days interval throughout the crop growth period up to a depth of 45 cm with intervals of 15cm. The crop was harvested on 24-25 March, 2002 and last week of March, 2003.

Results and Discussion

Soil moisture percentage varied at sowing to harvest but storage moisture tended to increase with depth (Figure 1). It also showed that with the increment of time soil moisture status within the same depth moved to decrease gradually. Moisture decreased sharply after 62DAS particularly on 0-15 cm and 15-30 cm soil depths. The difference between the moisture curves of conventional and deep tillage is narrow.

Effect of tillage method

Pods/plant and seed yields were significantly influenced by tillage method but maturity days, plant height and 100-seed weight were not significantly influenced. Deep tillage showed significantly higher yield due to higher no. of pod/plant.

Effect of variety

Plant height, pods/plant, 100-seed weight and seed yields were significantly affected by different variety. The BARI Chola-2 showed significantly higher plant height than Annigeri but pods/plant and 100-seed weights were significantly higher than BARI Chola-2. Significantly the highest seed yield was recorded from variety Annigeri due to higher pods/plant and 100-seed weight (Table 1). BARI Chola-5 included in 2002-03 but failed to show higher yield than BARI Chola-2 and Annigeri.

Interaction between tillage method and variety

Plant height, pods/plant, 100-seed weight and seed yields were significantly influenced by different tillage method and variety. Plant height was higher from M_2V_1 which was statistically at par to M_2V_2 . The variety Annigeri with deep tillage showed higher pods/plant but statistically identical to same variety with conventional tillage. But 100-seed weights were the highest from deep tillage with variety Annigeri but at par to conventional tillage of same variety. The highest seed yield was recorded from deep tillage with Annigeri. The highest yield could be attributed to high number of pods/plant and higher 100-seed weight and this advantage were achieved through better utilization of soil moisture and nutrients. On an average, higher seed yield was obtained from deep tillage with Annigeri variety. BARI Chola-5 failed to show higher yield in either of tillage method. Two years result showed that deep tillage with Annigeri variety could be grown in Sylhet region.

Table 1. Yield and yield contributing character of chickpea as affected by variety and tillage methods during rabi, 2001-02 & 2002-03

			100 1	× 71 1 1	(1 (1)
Treatment	Plant height	Pod/plant	100-seed	Y 1eld	(kg/ha)
Treatment	(cm)	1 ou/plain	weight (g)	2001-02	2002-03
Tillage Method					
Conventional (M ₁)	34.07	28	14.69	1076	1055
Deep (M ₂)	35.64	33	14.90	1236	1130
$LSD_{0.05}$	NS	2.77	NS	105.8	32.15
Variety					
BARI Chola-2 (V ₁)	37.20	27	14.73	979	912
Annigeri (V ₂)	36.09	38	17.68	1333	1597
BARI Chola-5 (V ₃)	31.33	26	11.98	-	770
$LSD_{0.05}$	1.13	3.39	0.47	105.8	39.40
Tillage method × Variety					
M_1V_1	36.03	26	17.77	890	879
M_2V_1	38.38	29	14.69	1068	944
M_1V_2	35.05	35	17.45	1262	1545
M_2V_2	37.03	40	17.91	1405	1650
M_1V_3	31.13	24	11.84	-	743
M_2V_3	31.53	27	12.10	-	798
LSD _{0.05}	1.61	4.78	0.67	211.6	55.70

Table 2. Physical and Chemical properties of the experimental site

Dramantias		Depth of soil layers (cm)						
Properties	0-15	15-30	30-45	45-60				
Soil pH (Initial)	5.1	7.3	7.6	7.8				
Soil pH (Harvesting stage)	6.1	7.1	7.6	-				
Bulk density	1.53	1.45	1.46	1.42				
Organic matter (%)	0.94	0.74	0.60	0.60				
N (Total %)	0.12	0.17	0.13	0.15				
P (ppm)	3.10	1.55	1.50	1.52				
K (meq./100 g soil)	0.06	0.18	0.12	0.11				
B (ppm)	0.30	0.34	0.42	0.38				

EFFECT OF PLANTING TIME ON THE PERFORMANCE OF BUSHBEAN

Abstract

An experiment was conducted at ARS, Comilla in 2002-03 and OFRD, ARS, BARI, Rangpur to determine the optimum range of planting for BARI Bushbean-1. It revealed that BARI bushbean-1 gave the highest marketable green pod yield from Dec. 12 sowing (15 t/ha) followed by Dec. 2 sowing (13 t/ha) at Comilla but 25 October and 25 December sowing gave higher benefit at Rangpur.

Introduction

Bushbean a newly introduced vegetable is grown in Bangladesh in a limited scale. The only variety BARI Bushbean-1 is available which a short duration crop with highly synchronous bearing. Bushbean is a potential crop with high yield potential. So, an experiment was undertaken to find out the optimum time of sowing of BARI Jharseem-1 for higher yield at Barisal and Bogra region.

Materials and Methods

The experiment was conducted at ARS, Comilla during rabi season from 2002-03. The experiment was laid out in Randomized complete block Design with 3 replications. The unit plot size was 9 sq. m. Five sowing dates Nov. 21, Dec. 2, 12 and Jan. 2 were tested at Comilla but 9 sowing dates (15 October to 5 January) at an interval of 10 days at Rangpur. The land was thoroughly prepared and fertilization was done with cowdung, Urea, TSP, MP @ 10 t/ha, 25 N, 75 P_2O_5 and 90 K_2O kg/ha, respectively. The variety of crop was BARI-Jharseem-1 and plant spacing was 40 cm x 15 cm. Irrigation and other intercultural operation was done when necessary. Plant/plot, plant height, number of pod per plant, length of pod, harvesting date and marketable yield were recorded and analyzed statistically.

Results and Discussion

ARS, Comilla

Plants/plot, pods/plant, length and weight of pod and pod yields were significantly influenced by different dates of sowing (Table 1). Higher no. of pods/plant was obtained from December 12 which was statistically identical to December 2 and November 21 sowing. Pod weight and pod length was not statistically influenced. The highest pod yield was obtained from December 12 sowing closely followed by December 2 sowing. The result showed that Bushbean could be grown from December 2 December 12 sowing at Comilla but it needs another year trial for confirmation.

OFRD, ARS, Rangpur

Sowing time had significant effect on all characters studied. Plant height was almost similar except 5 January sowing which showed the lowest height. Plants/m² was the lowest from October sowing and other were similar. Pods/plant showed similar except 25 October and 5 January sowing. Five November sowing showed higher edible green pod yield but statistically identical 15 November to 15 December sowing. Early sowing (October) failed to show higher yield and similar in the case of January sowing.

Souving time	$Plant/m^2$	Pod/plant	Pod length	Pod weight	Yield
Sowing time	r 1a110/111	Pod/plant Pod length (cm) 12.39ab 12.13 12.69ab 12.47 12.94a 12.87 9.53bc 11.67	(g)	(kg/ha)	
21 November 2002	12.42b	12.39ab	12.13	6.12	10.66ab
02 December 2002	13.08ab	12.69ab	12.47	6.21	12.94ab
12 December 2002	14.92a	12.94a	12.87	7.30	15.25a
22 December 2002	13.42ab	9.53bc	11.67	6.68	10.83ab
02 January 2003	13.17ab	7.65c	11.53	6.73	7.48b
LSD (0.05)	1.85	3.2	NS	NS	5.7
CV (%)	13.6	12.7	8.3	6.3	11.9

Table 1. Mean performance of Bushbean cv. BARI Jharseem-1 at different sowing dates at level Barind soil of ARS, Comilla during 2002-03

Table 2. Yield and yield contributing characters of Bushbean as influenced by different planting time at OFRD, ARS, BARI, Rangpur during rabi, 2002-03

Planting date	Plant /m ² at harvest (no.)	Plant height at harvest (cm)	Pod/plant (no.)	Pod length (cm)	Pod diameter (cm)	Edible green pod yield (t/ha)
October 15	6.4d	41.8a	11.3bc	11.0d	0.9c	4.30e
October 25	11.2c	40.0ab	11.0cd	12.2bc	1.1b	8.90c
November05	18.5b	42.4a	12.7abc	12.9ab	1.3a	13.10b
November 15	20.2ab	41.8a	13.0abc	12.7ab	1.4a	13.8ab
November 25	22.0a	40.1ab	13.7a	13.1ab	1.4a	15.33a
December 05	21.4a	41.5ab	13.3ab	13.6a	1.4a	14.60ab
December 15	21.3a	41.2ab	13.0abc	12.2bc	1.4a	13.50ab
December 25	20.3ab	39.5ab	12.3abc	11.2cd	1.2b	13.20b
January 05	11.2c	37.3ab	9.0d	8.8e	0.8c	6.70d
CV (%)	6.2	5.7	9.8	5.6	5.1	8.7

Means followed by the same letter(s) in a column are not significantly different at 5% level by DMRT

Table 3. Cost and return analysis of Bushbean as influenced by different planting time at OFRD, ARS, BARI, Rangpur during 2002-03

Dianting data	Sell price	Gross return	Total variable cost	Benefit cost
r failting date	(Tk./kg)	(Tk. /ha)	(Tk. /ha)	ratio
October 15	10.00	40300	21160	1.90
October 25	9.50	84550	21160	4.00
November05	7.50	98250	21160	4.64
November 15	6.50	89700	21160	4.24
November 25	6.00	91800	21160	4.35
December 05	6.00	87600	21160	4.14
December 15	6.50	87750	21160	4.15
December 25	6.50	85800	21160	4.05
January 05	7.50	50250	21160	2.37

EFFECT OF SOWING TIME ON THE PERFORMANCE OF MUNGBEAN IN AEZ # 3

Abstract

Three varieties of Mungbean (BARI Mung-2, BARI Mung-2 & BARI 5) were evaluated in different sowing dates (August 30, September 10, September 20 and September 30) at Rangpur during Kharif-II of 2002. Interaction effect of varieties and sowing dates was also significant in respect of grain yield and others characters studied. The variety, BARI Mung-2 produced significantly the highest grain yield (1079 kg/ha) sowing on August 30. The results indicated that among the tested varieties BARI mung-2 was found suitable when sown on August 30.

Introduction

Mungbean (*Vigna radiata* L. Wilczek) is one of the most important pulse crop in Bangladesh. It is one of the important sources of protein for both man and domestic animals. It has good digestibility and flavour. This crop, like other pulses, has the potential to enrich soil through N_2 fixation (B. L. Nag *et al.*, 1998). Mungbean is cultivated in a very limiting area in greater Rangpur region. During kharif-ll, it can be fit in the cropping pattern Wheat-Jute-Mungbean, Potato-Jute-Mungbean and Mustard-Jute-Mungbean in high land where normally T.Aman is not cultivated. But still it is undetermined the optimum sowing time for Mungbean in both two kharif seasons particularly in the AEZ # 3. So, an experiment was undertaken to find out the optimum sowing time for Mungbean cultivation in kharif-ll season.

Materials and Methods

The experiment was conducted at OFRD, ARS, Rangpur in highland of AEZ #3 during Kharif-II season of 2002-03 in rainfed condition. Three varieties released by Bangladesh Agricultural Research Institute (BARI Mung-2, BARI Mung-4 & BARI Mung-5) were tested sowing on four different dates (August 30, September 20 & September. 30). The experiment was laid out in split plot design with four replications. The varieties were accommodated in main plot and sowing dates assigned in the sub-plot. The unit plot size was 5m x 3m. Seeds were sown maintaining a spacing of 30cm x 10cm. The crop was fertilized with 20-8-10-12-1 kg N-P-K-S-B/ha, respectively. Plant protection measures were taken as and when necessary. Pods were harvested attaining its maturity. Data on the yield and yield attributes were recorded and analyzed. Means separations were done DMRT.

Results and Discussion

There were appreciable differences in grain yield and yield contributing attributes with the variation of varieties and sowing time (Table 1 & 2).

Effect of sowing date: August 30 sowing was significantly the highest seed yields and yield contributing characters. The yield contributing characters were decreased due to late sowing from August 30 sowing (Table 1).

Effect of Variety: The varieties significantly influenced the grain yield and yield contributing attributes. BARI Mung-2 gave the significantly highest grain yield (790 kg/ha). The highest grain yield was obtained from BARI Mung-2 due to the highest pods/plant and seeds/pod. Though significantly highest 1000-grain wt. (40.8 gm) was obtained from BARI Mung-5 but this variety produced significantly the lowest pods/plant and seeds/pod (Table 2).

Interaction between effect of sowing time and variety: The interaction effect of variety and sowing time showed significant effect on all characters studied (Table 3). BARI Mung-2 sowing on August 30 gave the significantly the highest grain yield (1079 kg/ha) possibly due to the highest number of pods/plant, seeds/pod though 1000-grain wt. was significantly lower than BARI Mung-5. Days to flower and mature decreased due to late sowing from August 30 sowing for all the varieties. Plant

height, number of pods/plant, pod length, seeds/pod and 1000 grain wt. were also decreased due to late sowing from August 30 sowing time for all the varieties (Table 3). These results indicated that among the tested varieties BARI mung-2 was found suitable when sown on 30 August sowing at Rangpur region.

On the basis of yield performance of the BARI Mung-2 could be cultivated sowing on 30 August. However, the trial needs repeat next year to validate this year's results.

References

Nag, B.L; Talukder M.M.R; Hafizullah , M; Nandey, S.K. and S. Rahman. 1998. Effect of number and time of weeding on the yield and yield attribute of mungbean. Bangladesh J. Agril. Res. 23 (2): 289-298

Table 1. Effect of sowing time on the yield, yield attributes and other characters of mungbean (averaged over varieties) during kharif II season of 2002 at OFRD, ARS, BARI, Rangpur

Sowing date	Plant height (cm)	Pod length (cm)	Pods/ plant (no.)	Seeds/ pod (no.)	1000-seed wt. (g)	80% maturity (DAS)	Seed yield (kg/ha)
Aug. 30	54.8a	6.8a	12.3a	10.7a	34.8a	68a	917a
Sept. 10	48.8b	6.3b	11.3b	10.0b	33.9b	65b	754b
Sept. 20	44.2c	5.9c	9.0c	9.3c	33.2c	60c	556c
Sept. 30	41.6d	5.4d	7.7d	9.3c	32.8c	57d	439d
CV (%)	2.44	3.78	11.29	7.71	1.93	2.03	7.73

Means in a column followed by the same letter(s) are not significantly different at the 5 % level by DMRT

Table 2. Performance of mungbean varieties (averaged over sowing dates) during kharif II season of2002 at OFRD, ARS, BARI, Rangpur

	Plant	Pod	Pods/	Saada/	1000-	80%	Seed
Variety	height	length	plant	nod (no.)	seed	maturity	yield
	(cm)	(cm)	(no.)	pod (no.)	wt. (g)	(DAS)	(kg/ha)
BARI mung-2	46.9b	6.0b	13.3a	10.3a	28.8c	66a	790a
BARI Mung-4	54.6a	5.9b	9.0b	10.5a	31.6b	62b	645b
BARI Mung-5	44.6c	6.3a	8.0c	8.8c	40.8a	59c	565c
CV (%)	2.60	4.70	8.90	10.17	2.80	2.10	8.38

Means in a column followed by the same letter(s) are not significantly different at the 5 % level by DMRT

Table 3. Interaction effect of variety and sowing time on the yield, yield attributes and other characters of mungbean during kharif II season of 2002 at OFRD, ARS, BARI, Rangpur

		Plant	Pod	Pods/	Seeds/	1000-	80%	Seed
Variety	Sowing date	height	length	plant	seeds/	seed	maturity	yield
		(cm)	(cm)	(no.)	pod (no.)	wt (g)	(DAS)	(kg/ha)
BARI mung-2	August 30	58.8a	6.7b	16a	11a	29.9g	71a	1079a
	September-10	47.6d	6.2cd	15a	10ab	28.8h	69b	872b
	September-20	41.8f	6.0de	12b	10ab	28.4h	64c	659c
	September-30	39.2g	5.3fg	10cd	10ab	28.1h	60e	549d
BARI mung-4	August 30	60.2a	6.5bc	11bc	11a	32.3d	68b	862b
	September-10	56.7b	6.1d	10cd	11a	31.9de	65c	732c
	September-20	51.4c	5.7e	8ef	10ab	31.1ef	59e	548d
	September-30	49.9c	5.2g	7fg	10ab	30.9f	57f	438e
BARI mung-5	August 30	45.3e	7.1a	10cd	10ab	42.2a	64c	812b
	September-10	42.2f	6.5bc	9de	9bc	41.2b	62d	659c
	September-20	39.3g	6.1d	7fg	8c	40.2c	56f	460e
	September-30	35.6h	5.6ef	6g	8c	39.5c	54g	329f
CV (%)		2.44	3.78	11.29	7.71	1.93	2.03	7.73

Means in a column followed by the same letter(s) are not significantly different at the 5 % level by DMRT

DETERMINATION OF SUITABLE PLANTING RANGE FOR GARDEN PEA CULTIVATION

Abstract

Four varieties of garden pea (BARI Motorshuti-1, BARI Motorshuti-2, BARI Motorshuti-3 and IPSA Motorshuti-1) were tested at the farm of OFRD, ARS, BARI, Rangpur during rabi, 2002-03 planting on different dates from October 22 to January 22 at 15 days interval to select suitable variety (s) and its optimum planting time. The result showed that there were significant differences among the varieties and different planting dates in respect of all the characters studied except seed per pod. The yield performances of the varieties were in order: BARI Motorshuti-3 > BARI Motorshuti-2 > BARI Motorshuti-1 > IPSA Motorshuti-1. BARI Motorshuti-3 produced the higher edible pod yield (17.72 t/ha) when sown on 22 November which was statistically identical to December sowing of same variety.

Introduction

Garden pea is a popular vegetable all over Bangladesh during winter season. For last few years the area and yield of this crop is reducing day by day. The reduction of area is probably due to low yield of existing variety; seeds are sown not in proper time, unfavorable weather during growth period etc. Recently BARI and IPSA has developed a few new varieties viz. BARI Motorshuti-1, BARI Motorshuti-2, BARI Motorshuti-3 and IPSA Motorshuti-1 respectively. Higher yield of those varieties might attract the attention to the farmers. But it is still unknown in the Rangpur region that which variety is better at which sowing time. The proper combination of a variety with its sowing time will be able to boost up the yield and escape different hazards. So, keeping this view in mind a trial was conducted to select suitable variety(s) and to determine its proper planting range for garden pea cultivation in Rangpur region.

Materials and Methods

The experiment was conducted at the farm of On-Farm Research Division, ARS, BARI, Rangpur during rabi season of 2002-03 in highland of sandy loam soil under AEZ # 3. The four varieties of garden pea (V1: BARI Motorshuti-1, V2: BARI Motorshuti-2, V3: BARI Motorshuti-3 and V4: IPSA Motorshuti-1 were tested planting on seven different dates (D₁: October 22, D₂: November 07, D₃: November 22, D₄: December 07, D₅: December 22, D₆: January 07 and D₇: January 22). The experiment was laid out in a split plot design with 3 replications. The planting dates were accommodated in the main plots and the varieties were assigned in the sub plots. The unit plot size was 3 m X 3 m. Seeds of BARI Motorshuti-1, BARI Motorshuti-2 and IPSA Motorshuti-1 were sown maintaining the spacing of 60 cm x 15 cm and that of BARI Motorshuti-3 with 30 cm x 10 cm. The plot of each planting dates were prepared properly and fertilized at the rate of 70-30-50-20-4-1-10000 kg N P K S Zn B and cowdung per hectare. The source of N, P, K, S, S, Zn and B was urea, TSP, MP, gypsum, -zinc sulphate and borax. The entire quantity of cow dung, TSP, gypsum, zinc sulphate and borax and half of urea and MP were t applied as basal during the final plot preparation. The rest of urea and MP were applied as top dress at 20 and 30 days after sowing (DAS). Irrigation and other intercultural operations and plant protection measures were taken as and when necessary. The green pod was harvested from each plantings of each variety at the time for edible. Data on the yield and yield attributes were recorded and analyzed statistically and mean separation was done by DMRT.

Results and Discussion

Results of the effects of planting time averaged over varieties, performance of the varieties and the interaction effects between planting dates and varieties have been presented in table, 2 and 3 respectively.

Effect of planting date: The edible pod yield, yield attributes and other characters studied were differed statistically except seed per pod. Significantly the highest edible pod yield (12.57 t/ha) was recorded from November 22 planting. The obtained higher and lower yields were mainly due to higher and lower plant population and pods per plant, respectively. Excess moisture in early planting due to rainfall (100 mm) in October 2002 ensured to damage seedlings affected by foot rot disease and low temperature (Maximum 19°C and Minimum 9°C) in January 2003 hampered germination for which plant population reduced in October and January plantings.

Effect of varieties: Different varieties showed significant difference in respect of yield and yield attributes except seed per pod. Among the four varieties, BARI Motorshuti-3 produced significantly the highest edible pod yield (9.60 t/ha). The lowest yield (4.15 t/ha) was obtained from IPSA Motorshuti-1. However, the yield performances of the tested varieties were in order: BARI Motorshuti-3 > BARI Motorshuti-2 > BARI Motorshuti-1 > IPSA Motorshuti-1. The lower yields obtained from the varieties were mainly due to the lower plant population and less pod per plant.

Interaction effects of planting date and variety: There was significant effect between planting dates and varieties on all the characters studied except seed per pod. BARI Motorshuti-3 produced significantly the highest edible pod yield of 17.72 t/ha in November 22 planting which was statistically identical to 7 December planting. Before and after this planting date the yield was significantly decreased. The higher yields of variety x planting date were mainly due to higher plant population and higher pod weight. These results indicated that planting range from 22 November to 7 December was found as the optimum for BARI motor shuti-3 and .BARI motor shuti-1

Conclusion

On the basis of yield performance of all the tested varieties, BARI Motorshuti-3 and BARI Motorshuti-2 could be cultivated planting from 22 November to 7 December, respectively. However, the trial needs repeat next year to validate this year's results.

 Table 1. Effect of planting on the yield, yield attributes and other characters of garden pea during rabi-2002-03 at OFRD, ARS, BARI, Rangpur

 Plant
 wt of pods
 Plant per
 Pods per
 Seeds
 Marketable

Planting	Plant	wt of pods	Plant per	Pods per	Seeds	Harvesting	Marketable
1 fanting	height	per	m^2	plant	per pod	(DAS)	pod yield
uale	(cm)	plant (g)	plant (g) (No.) (No.) (DA		(DAS)	(t/ha)	
Oct 22	54.03d	22.84c	16.58cd	13.25d	4.50	79.83b	5.78d
Nov 07	62.12b	25.97b	17.92b	19.90b	4.67	85.25a	7.82c
Nov 22	65.22a	27.20ab	20.08a	25.20a	5.25	84.00a	12.57a
Dec 07	57.20c	28.18a	19.33a	19.32b	5.33	77.50b	9.58b
Dec 22	50.07e	21.78cd	17.58bc	15.70c	4.67	72.00c	4.67e
Jan 07	41.53f	20.05d	15.67d	9.57e	4.67	71.17c	2.87f
Jan 22	41.09f	14.12e	11.00e	5.67f	4.83	79.25b	1.50g
CV (%)	4.2	9.6	10.0	8.0	10.1	4.7	8.7

Means in a column followed by the same letter(s) are not significantly different at the 5 % level by DMRT

Table 2. Effect of the varieties	s of garden	pea during rabi-2002-03	at OFRD. ARS.	BARI, Rangpur
	0	8))	, 01

Planting	Plant	wt of pods	Plant per	Pods per	Seeds	Harvesting	Marketable
date	height	per	m^2	plant	per pod	(DAS)	pod yield
	(cm)	plant (g)	(No.)	(no.)	(no.)		(t/ha)
BGP-1	69.62b	19.80c	13.52c	11.57b	5.00	98.52a	6.10c
BGP-2	78.55a	22.27b	15.00b	12.00a	4.76	95.67b	6.64b
BGP-3	41.95c	31.72a	25.43a	9.43c	4.86	56.71c	9.60a
IPSA-1	22.06d	15.57d	13.57c	6.90d	4.76	57.01c	4.15d
CV (%)	5.78	10.03	9.50	6.37	12.57	5.48	9.14

Means in a column followed by the same letter(s) are not significantly different at the 5 % level by DMRT

Planting date	Plant	Pods/	Seed	wt of	Plant per	11	Marketable
x	height	plant	/pod	pods per	m ²	Harvesting	pod yield
Variety	(cm)	(no.)	(no.)	plant (g)	(no.)	(DAS)	(t/ha)
D ₁ V _I	82.2cd	34.0d	4.67	21.00h-k	13.3h-j	110a	5.06hij
D_1V_2	85.9bc	9.3jk	4.67	20.00i-k	15.3f-h	95b	5.67fi
D_1V_3	29.71	5.0Î-o	4.33	31.30cd	27.0b	55d	8.92e
D_1V_4	18.4n	4.7l-o	4.33	19.60i-k	12.0j-1	56d	2.93lm
D_2V_I	88.8b	45.0b	4.67	25.00e-h	13.0i-k	114a	6.77f
D_2V_2	99.7a	8.0ki	4.67	20.80g-k	14.0g-j	114a	6.20fg
D_2V_3	35.6k	11.6ij	4.67	35.75b	28.3ab	56d	13.13c
D_2V_4	24.3m	5.0Î-o	4.67	22.30f-j	15.0f-I	57d	5.70f-i
D_3V_I	83.9bc	57.0a	6.33	26.57ef	15.3f-h	111a	11.67d
D_3V_2	103.3a	21.0e	4.67	23.23f-j	17.3de	111a	14.97b
D_3V_3	52.5fg	15.7gh	5.33	40.67a	29.7a	57d	17.72a
D_3V_4	21.2mn	10.7j	4.67	24.10e-i	18.0d	57d	5.94f-h
D_4V_I	74.40e	37.0c	4.67	23.60f-j	15.0f-I	97b	10.70d
D_4V_2	81.6cd	14.0hi	5.33	20.00i-k	16.3d-f	98b	11.70d
D_4V_3	47.9g-i	12.1ij	5.67	34.87bc	30.0a	57d	17.25a
D_4V_4	24.9lm	10.6j	5.67	28.40de	16.0e-g	58d	4.78ij
D_5V_I	56.5f	33.0d	4.67	25.37e-g	14.0g-j	87c	4.17jk
D_5V_2	77.1de	11.3j	4.67	26.60ef	15.0f-I	87c	3.97j-1
D_5V_3	42.7ij	11.1j	4.67	28.00de	28.3ab	57d	5.59gi
D_5V_4	24.0mn	7.4kl	4.67	21.47g-j	13.0i-k	57d	3.98kl
D_6V_I	53.5fg	19.0ef	4.67	20.50h-k	13.0i-k	87c	2.67m
D_6V_2	53.4fg	6.6lm	4.67	16.60kl	15.0f-I	87c	3.65mn
D_6V_3	38.5jk	6.01-n	4.67	21.60g-j	23.7c	57d	2.83 m
D_6V_4	20.7mn	6.7l-n	4.67	16.50kl	11.0k-m	57d	3.32km
D_7V_I	48.1ghi	12.0ij	5.33	14.30lm	11.0k-m	81c	1.65no
D_7V_2	48.9gh	3.00	4.67	11.80m	12.0j-1	80c	1.30o
D_7V_3	46.3hi	4.4m-o	4.67	19.17jk	11.0k-m	58d	1.68no
D_7V_4	21.0mn	3.4no	4.67	11.5m	10.0m	56d	1.350
CV (%)	5.78	6.37	12.50	10.30	9.50	5.48	9.14

Table 3. Interaction effect of planting dates and varieties on the yield, yield attributes and other characters of garden pea during rabi-2002-03 at OFRD, ARS, BARI, Rangpur

Means in a column followed by the same letter(s) are not significantly different at the 5 % level by DMRT

PERFORMANCE OF MANAGEMENT PRACTICES ON THE YIELD OF SESAME UNDER OLD BRAHMAPUTTRA FLOODPLAIN SOILS OF AEZ 9

Abstract

Package of management practices viz. sowing without post care; one hand weeding at 20 days after sowing; and fertilizer application along with one hand weeding at 20 days after sowing for higher yield of sesame (T-6) was conducted at farmers' field during the Kharif-1 season of 2001 & 2002. On an average, result revealed that the highest seed yield was obtained where fertilizer was applied along with one hand weeding at 20 days after sowing (980 kg/ha) which was equivalent to 131% higher yield compared to sowing without post care. The lowest seed yield was obtained from sowing without post care (465 kg/ha) whereas yield of one hand weeding at 20 days after sowing (595 kg/ha).

Introduction

Sesame (*Sesamum indicum*) is the second largest sources of edible oil in Bangladesh. The yield of sesame is very low due to poor management practices under field condition such as improper use of fertilizer, seeds, poor weed control etc. Proper package of improve management practices can increase the productivity of sesame up to a considerable extent (Mukherji, 1982). However, findings like improve package of production practices based on agro-ecological zones at farmers' field is meagre in the country. Hence, the present study was undertaken at the Farming Systems Research and Development Site, Narikeli, Jamalpur during the Kharif-1 season of 2001 to determine the package of improve management practices for higher yield of sesame under Old Brahmaputtra floodplain soils of AEZ 9.

Materials and Methods

The experiment was conducted at FSRD, Site, Narikeli, Jamalpur during the Kharif-1 season of 2001 & 2002 to determine the package of improve management practices for higher yield of sesame under AEZ 9. The experimental area was rainfed medium highland of clay loam soil having the p^{H} value of 5.9. The treatment include in study were i) sowing without post care; ii) one hand weeding at 20 days after sowing (DAS) and iii) fertilizer and one hand weeding at 20 DAS. The variety used was T-6 and the seed rate was 6 kg/ha. The experiment was conducted in a randomized complete block design with six dispersed replication. The unit plot size was 3m x 5m. The land was fertilized was 60 kg N, 55 kg P_2O_5 and 40 kg K_2O per hectare through urea, Triple super phosphate and muriate of potash. The entire amount of fertilizer was applied at the time of final land preparation. The seeds were broadcasted on March 19-April 4, 2001 and March 19-24, 2002 and the crops were harvested from June 7-11, 2001 and June 18-22, 2002. The data on the yield attributes were collected from 10 randomly selected plants collected prior to harvest from each plots. The collected data were analyzed statistically and means were separated with DMRT test.

Results and Discussion

All the characters except plants/m² and 1000-seed weight differed significantly due to variation in management practices (Table 1). The highest plant height was obtained from treatment T_3 which was statistically at par T_2 and the lowest height from T_1 . Similar trend was followed in case of plant/m², branches/plant, capsule/plant and seeds/capsule. All the characters showed the lowest in sowing without post care. Significantly the highest seed yield was obtained from fertilizer with one hand weeding at 20 DAS which might be due to higher branches/plant, capsule/plant, seed/capsule. It is revealed that 94% increase yield was achieved with fertilizers and weeding. Only one hand weeding also showed 27% higher yield than without post sowing care. This treatment showed the lowest yield among the treatments. The result might appear due to competition between weeds and crops for moisture and nutrients resulting in significant reduction in yield components. Similar results were also reported by Gaur and Trehan (1974). Jain *et al.* (1985) opined that weeds offered a serious competition to sesame plants and caused a reduction in yield to the extent of 46% to 76% which was more or less concurrent with the present findings (29%). However, from the result it may be concluded that higher yield could be obtained when fertilizer was applied along with one hand

weeding at 20 days after sowing which was equivalent to 131% higher yield compared to sowing without post care.

References

- Gaur, B.L. and K.B. Trehan. 1984. Effect of spacing and fertilization on the rainfed sesame (*Sesamum indicum*). Indian J. Agron. 19(3):217-219.
- Jain, G.L., S.M. Singh., M.P. Sahu and G.K. Sharma. 1985. Sesame production in Rajastan. Oilseed production. Constrains and Opportunities, New Delhi. pp. 181-198.

Table 1. Yield and yield contributing characters of sesame influenced by different management practices at Narikeli, Jamalpur during 2002-03

	Plant		Branches/	Cancule/	Seeds/	1000-seed	Seed yiel	d (kg/ha)
Treatment	height	Plants/m ²	plant	plant	capsule	weight	2001-02	2002-03
Т.	73.5h	46 7h	2 20h	26.0c	37.5c	3 20	417c	514c
	75.50	56.70	2.200	20.00	47.00	2.20	5271	65.41
I_2	90.2a	56.0ab	2.376	36.00	4/.20	3.22	53/b	6546
T ₃	102.3a	64.0a	3.35a	51.7a	56.0a	3.25	969a	997a
F-test	**	**	**	*	*	NS	**	*
CV (%)	9.60	12.61	6.16	9.08	11.23	5.96	10.90	10.26

Figures in a column having similar letter do not differ significantly by DMRT.

 T_1 = Sowing without post care

 T_2 = On hand weeding at 20 DAS and

T₃= Fertilizer and one hand weeding at 20 DAS

ON-FARM PERFORMANCE OF PROMISING SWEET POTATO VARIETY DEVELOPED BY BARI

Abstract

On-farm performance of sweet potato viz. Tripti, BARI Sweet Potato-4, BARI Sweet Potato-5, Kamalasunduri and Daulatpuri were evaluated against the farmers' local variety at multiplication test site of Melandah, Jhenaidah & Magura (Jessore) during the rabi season of 2001-2002. The result from Melandah showed that Tripti gave the highest tuber yield 25.0 t/ha. On the contrary, the performance of local variety was very poor which yielded only 13.9 t/ha. The highest gross return and benefit cost ratio was obtained from variety Tripti. At Comilla, the highest yield and gross return was obtained from variety Tripti. But variety Tripti was not included in the study at Jessore so Kamalasunduri gave the highest yield at Kamalasunduri at Magura but Kamalasunduri and BARI SP-4 & BARI SP-5. At Lebukhali, Patuakhali all the variety performed better except Kamalasunduri which produced the lowest yield among the varieties.

Introduction

Sweet potato a carbohydrate rich root crop can be used as a substitute of cereals in Bangladesh to meet up the food shortage. Generally, poor people are the consumers of sweet potato. It is the main source of carbohydrate and carotene for their survival. Farmers are using local variety, which is low yielded, and contain less carotene. Bangladesh Agricultural Research Institute (BARI) has developed two sweet potato varieties viz. BARI sweet potato-4 (SP-4) and BARI sweet potato -5 (SP-5) which has high yield ability and also contain high amount of carotene. These varieties need on-farm trial to evaluate their performance and also to get feed back from the farmers. Keeping the views in mind the experiment was under taken to evaluate their performance of recently developed sweet potato varieties developed by BARI.

Materials and Methods

The on farm validation trial of sweet potato were conducted at MLT site, Melandah, Magura and Jhenaidah during rabi season of 2001-02. Three varieties viz. Tripti, Sp-4, SP-5, Kamalasunduri, Daulatpuri and the local were tested in the farmers' field of Melandah. The vine was planted at the spacing 60 cm x 30 cm. The plot size was 6m x 9m per variety at each farmer's field. The crop was fertilized with 40-20-50-7-1.5 kg N-P-K-S-Zn/ha respectively. Half of urea & all others fertilizer were used at final land preparation. Remaining part of N fertilizer was top dressed in two equal splits 15 & 35 DAT. The vines were planted on December 18, 2002 at Melandah, 5 December 2002 at Magura and Jhenaidah. One weeding was done during the period of 15-30 DAT. There was no incidence of disease and pest attack. The crop was harvested during 27 April, 2003 at Melandah, 1st week of May 2003 at Magura and Jhenaidah.

Results and Discussion

Site: Melandah

The results showed that the maturity period of them ranges 122-130 days. Variety was significantly affected the tuber yield of sweet potato (Table 1). The highest tuber yield (24.71 t/ha) was obtained from BARI SP-4, which was statistically similar to BARI SP-5. Local variety gave the lowest tuber yield. The highest gross return and BCR was recorded from variety BARI SP-4 followed by BARI SP-4.

Site: Magura and Jhenaidah

At Magura, the highest yield was obtained from variety BARI SP-4 due to higher no. of tubers/plant and weight of tubers/plant (Table 1). At Jhenaidah, same variety (BARI SP-4) showed the highest yield due to higher weight of tubers.

Farmers' reaction

Farmers of Melandah opined that after boiling both the new varieties became very soft so farmers do not like. Moreover, local variety had better keeping quality than the released varieties when preserved under normal condition. These new varieties may harvest few days earlier than the local which sale is higher price. The local people prefer the yellow color of BARI SP-5 but at Jessore area local farmers are not prefers the BARI variety due to its less taste.

Table	1.	Effect o	f different	t varieties	on	yield	and	yield	components	of	sweet	potato	at	Melandah,
		Jamalpu	r during 20	002-03										

	Branches	Leaves/	Vines	Tuber/	Tuber	Tuber	Breadth	Boiling
Variety	/plant	plant	wt./	plant	wt./plant	length	of tuber	duration
	(no.)	(no.)	plant	(no.)	(kg)	(cm)	(cm)	(Min.)
BARI SP-4	7.40c	101d	258b	4.20a	446.00a	12.90ab	15.0ab	30c
BARI SP-5	14.30b	131c	384a	3.95a	489.50a	13.50a	16.0a	40b
Daulatpuri	9.50c	223a	292b	3.15ab	285.56b	12.00b	14.5b	42a
Local	17.40a	174b	260b	2.60b	230.50b	10.50c	12.3c	40b
CV (%)	10.68	11.09	9.09	10.89	6.76	9.04	7.25	6.51

Figure in a column having similar letters do not differ significantly by DMRT.

Table 2. Economic performance of sweet potato varieties developed by BARI at MLT Site, Melandah during 2001-02 & 2002-03

Variety	Tuber y	ield (t/ha)	Gross retu	ırn (Tk./ha)	Variable cost	В	CR
variety	01-02	02-03	2001-02	2002-03	(Tk./ha)	2001-02	2002-03
BARI SP-4	21.0a	24.71a	36750	49420	13162	2.79	3.75
BARI SP-5	16.1b	23.90a	28175	47800	13162	2.14	3.63
Daulatpuri	15.5b	13.15b	34875	49025	13162	2.65	3.50
Local	13.9b	11.18c	34750	39130	13162	2.64	2.57
CV (%)		10.92					

Price (Tk/kg): Tripti, BARI SP-4, BARI SP-5, Kamalasunduri Tk. 1.75/-, Daulatpuri & local Tk. 2.25/-

Table 3. Mean performance of sweet potato (MLT site Magura and Jhenaidah, Jessore during 2002-03

Location	Variatu	No. of	Weight of	Tuber yield (t/ha)			
Location	variety	tuber/plant	tubers/plant (kg)	2001-02	2002-03		
Magura	BARI SP-4	5a	0.88a	18.17	36.08a		
	BARI SP-5	4b	0.73b	19.33	31.00b		
	Local	4b	0.34c	12.17	14.83c		
Jhenaidah	BARI SP-4	4a	0.61a	37.74	29.95a		
	BARI SP-5	4a	0.43b	36.20	26.53b		
	Local	3b	0.25c	29.12	11.66c		

EFFECTS OF SEED CORMEL SIZE AND PLANT SPACING ON THE YIELD OF MUKHIKACHU

Abstract

An experiment was conducted at RARS, Jamalpur during kharif-1 season of 2001 & 2002 to find out the cormel seed size with optimum spacing for higher yield of Mukhikachu. The result showed that the highest cormel yield (28.08 t/ha) was obtained from cormel seed size (small $20\pm5g$) with closer spacing 60 cm x15 cm. This treatment also showed higher gross return than other treatments.

Introduction

Mukhikachu (Colocasia esulenta L. Schott.) is a popular indigenous vegetable of Bangladesh. The crop is extensively grown in the summer season, and is considered as an important vegetable, particularly in the months of September, October and November when the supply of other vegetables is scarce in the market. But till now, there has been no proper management on the production of this crop in Bangladesh. It is well documented that seed size and plant spacing have significant influence on the growth and yield of different crops and it is like that both the factors have similar effects on the yield of Mukhikachu. The present investigation was, therefore, undertaken with a view to find out the optimum size of seed cormel, proper plant spacing and method of planting for the production of Mukhikachu.

Materials and Methods

The experiment was conducted at RARS, Jamalpur, in Kharif season of 2001 & 2002. The treatment consisted of 3 levels of seed cormel size (small, medium and large weighing 20 ± 5 g, 30 ± 5 g and 40 ± 5 g per seed, respectively), and 4 levels of plant spacing (60 cm x 15 cm, 60 cm x 30 cm, 60 cm x 45 cm and 60 cm x 60 cm). The experiment was set up in a factorial randomized complete block design with 3 replications. Seed cormels of Mukhikachu variety Bilashi were planted on 26February, 2001 and 11 February, 2002. The unit plot size was 6 m x 1.8 m. The crop received 10 tons cowdung, 140 kg urea, 100 kg triple super phosphate and 120 kg muriate of potash per hectare. Cowdung and triple super phosphate were applied during land preparation. Urea and muriate of potash were side dressed in two equal splits 40 and 90 days after planting. The crop was harvested on 3 November, 2001, (248 days after planting) and 24 October, 2002 (255 DAP).

Results and Discussion

Effect of cormel size

The results pertaining to the yield and yield contributing characters due to cormel size has been presented in Table 1. It indicated that plant height increased significantly with the increase of cormel size. The highest plant height was recorded when large size cormel was planted while it was shortest with smaller size cormel. The similar trend was also noticed in case of leaves/plant. But the reverse observation was found in number of hill/sucker. The highest number of sucker was found in small sized cormel while it was significantly the lowest in large size cormel. But the number of cormel/hill was statistically similar in both small and large size cormel. The medium size cormel produced significantly lower number of cormel/hill. The weight of cormel/hill was found the highest in small size cormel and decreased significantly the larger size. The similar trend was also observed in yield of cormel also. However, significantly the highest yield was recorded in small size cormel while it was the lowest in large size cormel. Similar trend was obtained during 2001.

Effect of spacing

The result indicated that the plant height increased significantly with the increase in spacing (Table 1). The shortest plant was recorded with the closer spacing while it was the highest in larger spacing. The similar trend was also observed in case of number of leaves/plant. But the no. of suckers/hill was the highest in closer spacing and decreased significantly with larger spacing. Similar trend was observed in case of no. of cormel/hill and weight of cormel/hill also. However, significantly the highest cormel

yield was observed in closer spacing (18.79 t/ha) while it was the lowest in larger spacing. Some trend was followed in 2002.

Interaction effect

All the yield and yield contributing characters except no. of leaves/plant and sucker/plant were significant due to cormel size and spacing (Table 2). There was trend to increase plant height with the increase of cormel size and spacing. Similar trend was followed in case of leaves/plant but significantly the highest suckers/hill was recorded from wider spacing of large size cormel. Cormel/hill showed higher in medium size. Cormel with 60 cm x 60 cm followed by 60 cm x 15 cm and the lowest from wider spacing with large size. Significantly the highest wt. of cormels/hill was obtained from closer spacing of small size cormel. Similar trend was followed in case of cormel yield in both the years.

Cost and return analysis

Seed cormel when used in smaller size with closer spacing required 13320 Tk/ha (Table 3) and the amount decreased gradually with the wider spacing. The same trend was exhibited in medium and large size. But the gross return was found the highest in closer spacing with small size cormel (95960 Tk/ha). Form one-year result showed the highest yield and gross return of Mukhikachu could be achieved by small cormel size (20 ± 55) with spacing 60 cm x 15 cm.

Table 1.	Yield and	yield	contributing	characters	of	Mukhikachu	(cv.	Bilashi)	as	affected	by	cormel
	size and sp	oacing	5									

	Plant	Leaves/	Suckers/	Cormel/	Cormel	Yield	(t/ha)
Treatment	height (cm)	plant (no.)	hill (no.)	hill (no.)	wt. /hill (g)	2002-03	2001-02
Cormel size							
Small (20±5 g)	80.75c	4.11c	8.08a	13.75a	681.67a	15.56a	18.25a
Medium(30±5 g)	146.42b	4.86b	6.92b	11.75b	575.00b	14.38b	17.98b
Large (40±5 g)	166.17a	5.28a	6.17c	13.42a	526.67c	13.13c	17.28c
F-test	**	**	**	**	**	*	**
Spacing							
60 cm x 15 cm	102.56c	3.97c	8.56a	13.33a	665.56a	18.79a	22.63a
60 cm x 30 cm	128.33b	4.24b	6.44c	13.67a	595.56c	15.70b	19.85b
60 cm x 45 cm	144.67a	5.12a	7.67b	12.44b	611.11b	11.38c	14.81c
60 cm x 60 cm	148.89a	5.67a	5.56d	10.44c	505.56d	11.54c	14.04d
F-test	**	**	**	**	**	**	**
CV (%)	9.48	8.59	10.11	9.84	12.96	11.35	10.01

Figure in the column having similar letter do not differed significantly by DMRT.

		Plant	Leaves/	Suckers/	Cormol/	Wt. of	Yield of	fcormel
In	teraction	height	plant	bill (no)		cormels/	(t h	a ⁻¹)
		(cm)	(no.)	nill (no.)	nill (no.)	hill (g)	2002-03	2001-02
Small	60 cm x 15 cm	59.67g	3.00g	4.33f	15.67a	760.00a	23.99 a	28.08a
	60 cm x 30 cm	87.33f	4.07f	6.00e	11.00e	526.67ef	12.75ef	16.66f
	60 cm x 45 cm	89.00f	4.30f	7.00d	12.67d	546.67e	10.22g	14.81h
	60 cm x 60 cm	87.00f	4.87f	7.33d	14.33b	616.67c	10.54g	13.43J
Medium	60 cm x 15 cm	115.67e	4.03e	6.00e	11.33e	523.33f	16.99c	20.37c
	60 cm x 30 cm	138.00d	4.47d	6.33e	13.33bcd	573.33d	22.34b	24.07b
	60 cm x 45 cm	158.00c	5.13c	7.33d	14.33b	583.33d	12.09f	14.20I
	60 cm x 60 cm	174.00b	5.80b	8.00c	16.00a	620.00c	13.29e	13.27k
Large	60 cm x 15 cm	132.00d	4.67d	6.33e	11.00e	576.67d	15.39d	19.44d
	60 cm x 30 cm	159.67c	4.20c	7.00d	13.00cd	686.67b	12.00f	18.83e
	60 cm x 45 cm	187.00a	5.93a	8.67b	14.00bc	703.33b	11.84f	15.43g
	60 cm x 60 cm	185.67a	6.33a	10.33a	9.00f	416.67g	10.79g	15.43g
F-test		**	NS	NS	**	**	**	**
CV (%)		9.47	12.59	10.11	9.84	8.96	10.35	10.01

Table 2. Interaction effects of cormel size and plant spacing on the yield & yield components of Mukhikachu (cv. Bilashi)

Figure in the column having similar letter do not differed significantly by DMRT

Table 3. Investment due to seed cormels and return/ha as influenced by seed size and plant spacing in Mukhikachu (cv. Bilashi)

Sussing			Seed cormel	size (g/seed)						
Spacing	Small (2	0±5 g)	Medium	(30±5 g)	Large (Large $(40\pm 5 \text{ g})$				
(cm)		Se	ed cormels re	quired (kg ha	a ⁻¹)					
60 x 15	222	20	33	32	44	40				
60 x 30	11	10	16	66	22	20				
60 x 45	74	0	11	10	14	80				
60 x 60	55	0	83	33	11	.08				
	Cost of seed cormels (Tk ha ⁻¹)									
60 x 15	13320		199	992	26640					
60 x 30	660	50	99	96	13320					
60 x 45	444	40	66	60	8880					
60 x 60	332	24	49	98	6648					
		Gross ret	urn from harv	ested cormels	s (Tk ha ⁻¹)					
	2002-03	2001-02	2002-03	2001-02	2002-03	2001-02				
60 x 15	95960	112320	67960	81480	61560	77760				
60 x 30	51000	66640	89360	96280	48000	75320				
60 x 45	40880	59240	48360	56800	47360	61720				
60 x 60	42160	53720	43160	53080	53160	61720				

Price (Tk./ha): Seed cormels = 6.00 Harvested cormels= 4.00

EFFECT OF VARIETY AND PLANT SPACING ON YIELD OF MUKHIKACHU

Abstract

An investigation was conducted at the Multilocation Test Site, Melandah during the Kharif season of 2002. The result showed that closest spacing (60 cm x 30 cm) with variety Bilashi gave higher yield and gross margin as compared to other treatments. Significantly higher yield was obtained with Bilashi than local one.

Introduction

Mukhikachu (*Colocasia esculenta* L. Schott.) is a popular indigenous vegetable in Bangladesh. The crop is extensively grown in the summer season and is considered as an important vegetable, particularly in the months of September, October and November when the supply of other vegetables is scarce in the market. But till now, there has been no proper management on the production of this crop. The present investigation was, therefore, undertaken with a view to find out a suitable variety with proper plant spacing for the production of Mukhikachu at Multilocation Test Site, Melandah.

Materials and Methods

The experiment was conducted at the Multilocation Test Site, Melandah during the Kharif season of 2002. The treatment of the experiment consisted of 2 varieties (Bilashi and Local), and 3 levels of plant spacing (60 cm x 30 cm, 60 cm x 40 cm and 60 cm x 50 cm). The experiment was set in a split plot design where the variety was assigned in the main plot and spacing in the sub plot. The experiment was replicated in three dispersed farmers' field. Seed cormels of 20 ± 5 g was planted on March 19, 2002. The unit plot size was 6 m x 3 m. The crop received 10 tons cowdung, 140 kg urea, 100 kg triple super phosphate and 120 kg muriate of potash per hectare. Cowdung and triple super phosphate were applied during land preparation. Urea and muriate of potash were side dressed in two equal splits 40 and 90 days after planting. Finally the crop was harvested from October 10, 2002.

Results and Discussion

Effect of variety: The results pertaining to the yield and yield contributing characters due to variety has been presented in Table 1. It indicated that plant height, yield and all the yield contributing characters differed significantly due to variety which resulted the highest yield from variety Bilashi.

Effect of spacing: The result indicated that plant height, yield and yield contributing characters decreased significantly with the increase in plant spacing. The highest cormel yield was recorded with closest spacing (60 cm x 20 cm) due to higher yield attributes.

Interaction effect: Plant height, yield and yield attributes were significantly influenced by variety and spacing. The highest plant height was recorded from local variety of 60 cm x 30 cm spacing which was at par to 60 cm x 40 cm of same variety. Significantly the highest leaves/plant was obtained from closer spacing (60 cm x 30 cm) with local variety. The highest cormel/hill was produced from 60 cm x 30 cm spacing of Bilashi variety. Similar trend was followed in case of cormel weight and cormel yield.

Cost and return analysis indicated that closer spacing required higher amount of seed cormel which also required higher amount of seed cost. But in terms of gross return and gross margin was achieved form closer spacing (60 cm x 30 cm).

Treatment	Plant height (cm)	Leaves/ plant	Suckers/ hill	Cormel/hill (no.)	Cormel wt. /hill (g)	Yield (t/ha)
Variety			L.			
Local	127a	4.28a	5.29	20.23b	519.35b	25.37b
Bilashi	104b	4.18b	5.23	32.63a	686.53a	42.17a
F-test	*	*	NS	*	*	*
CV (%)						
Spacing						
60 cm x 30 cm	122.40a	4.95a	6.55a	33.85a	726.68a	40.31a
60 cm x 40 cm	116.55b	4.25b	5.41b	25.20b	681.86b	35.60b
60 cm x 50 cm	108.65c	3.50c	4.28c	25.25c	655.50c	25.42c
F-test	**	**	**	**	**	**
CV (%)	12.23	8.36	8.56	10.60	9.38	11.87

Table 1. Yield and yield contributing characters of Mukhikachu as affected by variety and spacing

Figure in the column having similar letter do not differed significantly by DMRT.

Table 2. Interaction effects of cormel size and plant spacing on the yield components of Mukhikachu

Interaction		Plant ht. (cm)	Leaves/ plant (no.)	Suckers/ hill (no.)	Cormel/ hill (no.)	Cormel wt. /hill (g)	Cormel yield (t/ ha)
Local	60 cm x 30 cm	130.80a	5.15a	6.91	24.10c	562.10d	19.40e
	60 cm x 40 cm	127.90a	4.25e	6.00	20.75d	504.35e	26.02d
	60 cm x 50 cm	124.50b	3.45d	6.50	15.85e	486.60f	30.71c
Bilashi	60 cm x 30 cm	114.00c	4.75b	6.20	43.60a	886.25a	49.91a
	60 cm x 40 cm	105.00d	4.25c	3.30	29.65b	859.35b	45.18b
	60 cm x 50 cm	92.81e	3.55d	7.30	24.65c	824.40c	31.44c
F-test		*	*	NS	*	*	**
CV (%)		12.23	8.36	8.56	10.60	9.38	11.87

Figure in the column having similar letter do not differed significantly by DMRT

Table 3. Investment due to seed cormels and return/ha as influenced by variety and plant spacing in Mukhikachu

Spacing	Seed cormel	Seed cost	Gross return	Gross margin
(cm)	(kg/ha)	(Tk./ha)	(Tk./ha)	(Tk./ha)
60 x 30	1110	6660	161240	154580
60 x 40	740	4440	142400	137960
60 x 50	550	3324	101680	98356

Price (Tk/ha): Seed cormels = 6.00 Harvested cormels= 4.00

STUDY ON THE LATE PLANTING POTENTIAL OF SOME TOMATO VARTIEIES IN RABI SEASON

Abstract

An experiment was conducted at the RARS, Rahmatpur, Barisal, FSRD site, Lebukhali, Patuakhali during rabi 2001-02 and RARS, Jessore in 2002-03. Four tomato varieties (BARI Tomato-4, BARI Tomato-5, BARI Tomato-6 & BARI Tomato-10) were planted in five different sowing dates (1 December, 16 December, 1 & 16 January and 1 February). BARI Tomato-4 planted at 16 December performed better and showed that late planting is feasible with reasonable good yield (61.67 t/ha) in 2001-02 but December 1 showed higher yield from BARI Tomato-5 in 2002-03. At Lebukhali, reasonable good yield was obtained from variety BARI Tomato-6 and BARI Tomato-2 which could be grown from Dec. 2 to Jan. 16.

Introduction

Gradual increase in the price of tomato after the period of seasonal abundance offers an opportunity of growing tomato late in the season to avail the benefit of high market price. Growing a long duration variety that gives good yield towards the end of the growing season or planting suitable varieties as late crop might be useful in this regard. For satisfactory production, such varieties should have high temperature tolerance. However, suitable varieties have not yet been available for such conditions in Bangladesh. In this situation, it is worth while to study the late planting potential of existing varieties and select better one(s) for late planting in different AEZ of the country. So, the trial has been designed to find out the suitable tomato variety for late Rabi.

Materials and Methods

An experiment was conducted at the RARS, Rahmatpur, Barisal and Lebukhali, Patuakhali during Rabi season 2001-02 & 2002-03 and RARS, Jessore in 2002-03 to find out the potential tomato variety for late Rabi season. The trial was set up in a split plot design with 3 replications. Five planting dates (1 December, 16 December, 1 & 16 January and 1 February) were assigned in the main plots and four tomato varieties (BARI Tomato-5, BARI Tomato-6 and BARI Tomato-10) were assigned in the sub plots. Unit plot size was 3x4 m² and the seedlings were transplanted following 60 cm x 50 cm spacing. Recommended fertilizer dose and cultural practices were followed as and when necessary. Diethene M-45 and Ridomil were sprayed before flowering. Harvesting continued from 11 March to 22 April 2003 at Jessore. Collected data were analyzed statistically. For mean comparison Duncan Multiple Range Test was calculated.

Results and Discussions

Rahmatpur, Barisal

Among five different planting dates, 1 December planting performed better in all respect and gave the highest yield (40.20 t/ha). It is remarkable that plant height, fruit bearing, fruit size, fruit weight as well as Total Soluble Sugar (TSS) decreased with increasing temperature that is planting after December (Table 1).

Among four tomato varieties, BARI Tomato-5 gave the highest yield (23.09 t/ha) followed by BART Tomato-4. Significantly bigger fruit diameter and weight of fruit were produced from BARI tomato-6. Plant height, fruit size, weight and percent TSS (2.46) were higher in BARI Tomato-6 but bearing was less (7.83 fruit/plant). BARI Tomato-4 and BARI Tomato-5 showed higher bearing habit (25.97 and 21.35 fruits/plant). On an average, the highest yield was recorded from BARI Tomato-4.

Interaction between sowing date and variety was found significant in respect of plant height, fruits/plant, fruit length and diameter, TSS (%) and yield (Table 3). Significantly the highest plant height was obtained from D_1V_3 . The treatment D_1V_2 showed significantly the highest fruits/plant. Fruit length revealed higher from treatments D_1V_4 . Weight of fruit/plant varied from 29 to 94 gm but

insignificant. Higher weight from D_3V_3 followed by D_2V_3 . All the varieties sown on December 1 with BARI Tomato-6 showed higher TSS (%). The highest fruit yield was recorded from December 1 sowing of BARI Tomato-5 variety. All the varieties showed lower fruit weight after January 16 sowing. On an average, higher fruit yield was obtained from December sowing (1 t/ha) with BARI Tomato-4 or 6.

Lebukhali, Patuakhali

Sowing date influenced significantly only plant height and fruits/cluster similar in the case of variety. Days to flowering, no. of fruits/plant, fruit wt., yield/plant and yield (t/ha) was significantly influenced by sowing date and variety (Table 4). Sowing from Dec. 2 with variety BARI Tomato-6 and BARI Tomato-2 showed higher no. of fruits/plant. Similar trend was followed in case of fruits wt. On an average, the highest yield was obtained from BARI Tomato-2, BARI Tomato-6 in December 2 sowing.

RARS, Jessore

Fruits/plant, yield/plant and yields were significantly influenced by sowing date. December 16 and December 1 showed similar yield and the lowest with the advanced of dates. Similar in the case of fruit/cluster and no. of fruits/plant. In case of variety BARI Tomato-5 gave higher yield but at par to BARI Tomato-4. Significantly the highest fruits/cluster and fruits/plant reflected higher yield from BARI Tomato-5. All the yield attributes and yield were significantly influenced by variety and sowing date (Table 7). Significantly the highest fruit yield was obtained from BARI Tomato-6 when sown in December 16. With the advancement of date, yield was decline.

From above result it showed that planting December 1 to 15 BARI Tomato-4 and BARI Tomato-5 performed better with reasonable gave yield at Barisal region. But at Lebukhali, BARI Tomato-6 and BARI Tomato-2 could be grown from Dec. 2 to Jan. 6 with good yield. At Jessore, BARI Tomato-5 planted in December 16 gave higher yield followed by BARI Tomato-4.

	Plant	Days to	Fruits/	Fruits	Fruit	Fruit	755	Yi	eld
Treatments	height	50%	nlanta	length	diameter	weight	(%)	(t/	ha)
	(cm)	flowering	plants	(cm)	(cm)	(gm)	(70)	01-02	02-03
December 1	97.58a	37a	38a	4.89a	4.31ab	48.59a	2.62a	-	40.20a
December 16	85.50b	36ab	23b	4.88a	4.55a	53.40a	2.34ab	43.93a	27.18ab
January 1	69.08c	35ab	13bc	4.72a	4.73ab	59.43a	2.30ab	22.90b	14.47bc
January 16	52.75d	34b	7c	4.44b	3.87bc	49.97a	2.12b	6.25c	5.83c
February 1	40.67e	34b	2c	3.76c	3.43c	37.48a	2.08b	2.38c	0.88c
CV (%)	10.07	11.08	21.42	6.18	9.14	17.35	6.12	22.92	26.50

Table 1. Effect of sowing dates on the yield and yield components of different Tomato varieties at Rahmatpur, Barisal, 2002-03

Table 2. Effect of variety on the yield and yield components of different Tomato varieties during2002-03 at Rahmatpur, Barisal

Treatments	Plant height	Days to 50%	Fruits/	Fruit length	Fruit diameter	Weight /fruit	TSS	Yie (t/l	eld na)
	(cm)	flowering	plants	(cm)	(cm)	(gm)	(%)	2001-02	2002-03
BARI Tomato-4	70.33a	30.73b	21.83a	4.46a	3.94b	35.40c	2.26a	25.90a	20.28a
BARI Tomato-5	78.33a	35.53ab	25.97a	4.44a	3.71b	34.02c	2.33a	19.17b	23.09a
BARI Tomato-6	79.87a	39.33a	7.83b	4.53a	5.06a	76.72a	2.40a	11.63c	14.18b
BARI Tomato-9	45.53b	34.80ab	11.36b	4.73a	3.67b	52.95b	2.18a	18.79b	13.31b
CV (%)	10.07	11.08	21.42	6.18	9.14	17.35	6.12	22.97	26.30

				1		1	1		· · ·
Treat-	Plant	Davs to 50%	Fruits/	Fruit lenath	Fruit	Weiaht/fru		YI	eld
ments	height	flowering	plant	(cm)	diameter	it (am)	TSS (%)	(t/na)	
monto	(cm)	nononing	plain	(em)	(cm)	it (giii)		2001-02	2002-03
D_1V_1	98.00	32.00bcdef	46.80b	4.51bcd	3.91bcdef	31.89d	2.58b	-	42.39ab
D_1V_2	110.00	35.67abcdef	56.00a	4.48hcd	3.77hcdefg	29.07f	2.48hc	-	47.77a
D_1V_3	122.70	41.00a	18.70ef	4.81bcd	5.40a	84.04ab	2.95a	-	36.04b
D_1V_4	59.67g	38.67abc	31.63d	5.78a	4.17hcd	49.31cde	2.4nhc	-	34.71hc
D_2V_1	85.33de	31.67cdef	30.80d	4.71bcd	4.37bc	36.90def	2.26cdefg	61.97a	33.22c
D_2V_2	98.33c	37.33abcde	38.50c	4.86bcd	4.03bcde	38.50cdef	2.33bcdef	46.75b	39.75abc
D_2V_3	95.67cd	39.67ab	10.20gh	4.91bc	5.9Ua	4.63ab	2.4~bc	27.33cd	1~.66d
D_2V_4	50.67ghij	33.33abcdef	13.33fg	5.03b	3.9Obcdef	53.58c	2. 28cdefg	39.67b	17.11de
D_3V_1	71.67f	30.67def	17.80ef	4.85bcd	4.23bcd	38.90cdet	2.26cdet	30.42c	g 17.11de
D_3V_2	80.00ef	36.67abcM	23.13e	4.75bcd	3.90bcdef	3437def	2.35bcde	23.17cde	19.74d
D_3V_3	79.33ef	39.00abc	4.70hi	4.73bcd	5.50a	93.54a	2.40bcd	16.00ef	11.16def
D_3V_4	45.33hij	33.33abcM	5.93hi	.55bcd	3.67cdefg	70.89b	2.21cdefg	22.17de	9.88efg
D_4V_1	54.67ghi	30.00ef	9.93gh	4.43cd	3.87bcdef	36.06def	2.06fgh	7.67gh	6.88fgh
D_4V_2	57.67gh	35.67abcdcf	8.63gh	4.33d	3.60defg	38.47cdef	2. 28cdefg	4.42gh	6.47fgi1
D_4V_3	59.00g	38.00abcd	4.47hi	4.49bcd	4.43b	70.51b	2.11efgh	2.50gh	4.88fgh
D_4V_4	39.67ik	33.00bcdef	4.43hi	4.50bcd	3.57defg	54.82c	2.05gb	1.42fg	4.83fgh
D_5V_1	42.00ijk	29.33f	3.80hi	3.7ge	3.33erp	33.25ef	2.15def	3.55gh	1.80.l?,h
D_5V_2	45.67ĥij	32.33bcdcf	.57hi	3.77c	3.27fg	29.68f	2.23cdcfg	2.33gh	1.46gb
D_5V_3	42.67ijk	39.00abc	1.07i	3.73e	3.07	50.89cd	2.06f	2.00h	0.15h
D_5V_4	32.33k	35.67abcdcf	1.47i	3.77e	-	36.11def	1.90h	8.75gh	0.l2h
CV (%)	10.07	11.08	21.42	6.18	9.14	17.35	6.12	22.97	26.50

Table 3. Interaction effect of different sowing dates and varieties on yield and yield components of Tomato (Rahmatpur, 2001-03)

Table 4. Interaction effect of planting time and variety on the yield of Tomato in rabi season, 2001-03 at Lebukhali, Patuakhali

		Days to	No. of	Average	Vield	Yi	eld
Planting time	Variety	50%	fruits/	fruit wt.	(kg/plant)	(t/l	na)
		flowering	plant	(gm)	(kg/plain)	2001-02	2002-03
December 2	BARI Tomato-4	42c	21c	34e	0.714	23fg	22.5fg
	BARI Tomato-5	39d	20c	34e	0.680	25f	21.8f
	BARI Tomato-6	45a	24b	80a	1.920	72a	63.0a
	BARI Tomato-2	46a	25a	79a	1.975	73a	65.6a
December 16	BARI Tomato-4	43b	22bc	31g	0.682	21fgh	21.4fgh
	BARI Tomato-5	40cd	18de	32fg	0.576	21fgh	18.2gh
	BARI Tomato-6	46a	26a	82a	2.132	71ab	59.0b
	BARI Tomato-2	44b	25a	81a	2.025	68bc	60.0b
January 1	BARI Tomato-4	38d	18de	32fg	0.576	20fgh	18.7gh
	BARI Tomato-5	37e	20c	32fg	0.640	21fgh	20.5fg
	BARI Tomato-6	45a	23b	79a	1.817	68ab	58.8b
	BARI Tomato-2	42c	25a	78ab	1.950	68bc	63.2a
January 16	BARI Tomato-4	36e	19d	29h	0.551	19gh	17.6ghi
	BARI Tomato-5	33g	17e	30gh	0.510	19h	16.3hi
	BARI Tomato-6	42c	22bc	75b	1.65	62d	52.4b
	BARI Tomato-2	39d	24b	70c	1.68	63cd	54.8b
February 2	BARI Tomato-4	33g	16f	28hi	0.448	17h	14.4hi
	BARI Tomato-5	34f	20c	29	0.580	19gh	18.2gh
	BARI Tomato-6	40cd	18de	69cd	1.242	48e	38.6d
	BARI Tomato-2	36e	18de	66e	1.188	49e	19.5gh
CV	/ (%)	6.5	8.1	7.6	8.9	4.86	10.6

Planting date	Fruit/cluster	Fruit/plant	Yield/plant (kg)	Yield (t/ha)
December 01	5.88a	26.56a	1.08a	18.66a
December 16	5.21b	21.02b	0.71b	20.40a
January 01	4.20c	9.78c	0.33c	5.57b
January 16	3.44d	6.86d	0.17d	3.06c
February 01	3.62d	3.15e	0.11e	1.67c
CV (%)	7.50	18.08	13.61	20.76

Table 5. Effect of planting date on the yield and yield components of late planting tomato at RARS, Jessore during 2002-03

Table 6. Effect of variety on the yield and yield components of late planting tomato at RARS, Jessore during 2002-03

Variety	Fruit/cluster	Fruit/plant	Yield/plant (kg)	Yield (t/ha)
BARI Tomato-4	4.38b	13.88b	0.506a	10.61ab
BARI Tomato -5	4.67a	21.47a	0.517a	11.15a
BARI Tomato -6	4.71a	9.61c	0.423b	8.27c
BARI Tomato -12	4.11c	8.93c	0.475a	9.48bc
CV (%)	7.50	18.08	13.61	20.76

Table 7. Interaction effect of planting date and variety on the yield and yield components of late planting tomato at RARS, Jessore during 2002-03

Planting time	Variety	Fruits/ cluster	Fruits/ plant	Yield/ plant (g)	Yield (t/ha)	Average fruit weight (g)
December 2	BARI Tomato-4	6.37a	28.57b	1.19a	20.24bc	43
	BARI Tomato-5	6.40a	45.27a	1.16a	20.56bc	25
	BARI Tomato-6	6.27a	15.80d	0.80b	14.04e	50
	BARI Tomato-12	4.47cd	16.60d	1.17a	19.79cd	70
December 16	BARI Tomato-4	4.77c	23.10c	0.81b	23.51ab	41
	BARI Tomato-5	5.60b	32.53b	0.71bc	24.18a	24
	BARI Tomato-6	6.00ab	14.30de	0.64c	16.49de	44
	BARI Tomato-12	4.47cd	14.17de	0.66c	17.44cde	46
January 1	BARI Tomato-4	4.28cde	7.87fgh	0.28de	5.23fgh	40
	BARI Tomato-5	4.10d-g	15.60d	0.38d	6.15f	21
	BARI Tomato-6	4.20c-f	9.07fg	0.37d	5.83fg	40
	BARI Tomato-12	4.20c-f	6.57f-i	0.31de	5.05fgh	47
January 16	BARI Tomato-4	3.37hi	6.47f-i	0.15f	2.79fgh	32
	BARI Tomato-5	3.57f-i	10.27ef	0.20ef	3.23fgh	19
	BARI Tomato-6	3.30hi	6.07f-i	0.21ef	3.37fgh	33
	BARI Tomato-12	3.53ghi	4.63ghi	0.13f	2.86fgh	36
February 2	BARI Tomato-4	3.09i	3.40hi	0.10f	1.71h	28
	BARI Tomato-5	3.70e-i	3.70hi	0.14f	1.94gh	20
	BARI Tomato-6	3.77e-h	2.80i	0.10f	1.63h	32
	BARI Tomato-12	3.90d-h	2.70i	0.10f	1.50h	34
C	V (%)	7.50	18.08	13.61	20.76	-
EVALUATION OF CHERRY TOMATO VARIETIES IN DIFFERENT AGRO-ECOLOGICAL REGIONS

Abstract

An experiment was conducted at Agricultural Research station Bogra during 2000-03 and RARS, Jessore on 2002-03 to find out adaptability and performance of cherry tomato varieties in different agro-ecological zone. After three years experimentation at Bogra, it was found that the variety AT-112 (58.22 t/ha) gave the highest yield followed by AT-113 with yield of 55.54 t/ha. At Jessore, the variety BARI Tomato-1 gave higher yield (19.34 t/ha) followed by BARI Tomato-2 in one year result.

Introduction

Cherry tomato varieties have recently been introduced in Bangladesh. These are vary rich source of carotene as well as vitamin-C and can play a vital role in improving the nutrition of vast rural masses. However, the recently introduced varieties have not been evaluated in the diverse Agro-ecological regions of the country and farmers' acceptance of the varieties has not been evaluated. Considering the above facts, the trial was undertaken to evaluate the performance of available varieties in different Agro-ecological regions of the country.

Materials and Methods

The experiment was conducted at Agricultural Research Station, Bogra during Rabi season from 2000-03 and RARS, Jessore on 2002-03. The experiment was laid out in Randomized Complete Block design with three replications. The unit plot size was 3 m x 3 m and the plant spacing was 60 cm x 50 cm. Four varieties AT-110, AT-111, AT-112 and AT-113 obtained from AVRDC and two from BARI (BCT-4 and BCT-5) were tested. The land was thoroughly prepared and fertilization was done with cowdung, Urea, TSP, MP, Gypsum, Boric acid and NH4-molibdate @ 10 t/ha, 100 N, 75 P₂O₅, 125 K₂O, 40 S, 7.5 B kg/ha and 550 gm/ha respectively. Half of the cowdung, P₂O₅ and total amount of Gypsum, Boricacid and NH4-Molibdate were applied during final land preparation. The remaining 50% cowdung and P₂O₅ were applied during pit preparation prior to planting. The rest N and K₂O were applied in 2 equal installments at 21 and 35 days after transplantation followed by irrigation. Thirty days old seedlings were transplanted. Azodrin and Ridomil were used for controlling the Aphids and late blight of tomato respectively. Data on date of 50% flowering, plant height, fruit/plant, fruit /cluster, average weight of fruit, seed/fruit, marketable yield/ plant/ha, date of 1st and last harvest were recorded. At Bogra, duration of harvest of different varieties of tomato was recorded which showed variation i.e. AT-110 (27 days, 2-24 April), AT-111 (22 days, 2-24 April), At-112 (21 days, 2-23 April), At-113 (22 days, 2-24 April), BCT-5 (18 days, 22 March-9 April) & BCT-6 (18 days, 22 March-9 April).

ARS, Bogra

Results and Discussion

Days to flowering, plant height, yield and yield contributing characters were significantly influenced by different varieties of tomato (Table 1).

The maximum days to 50% flowering (63 days) was recorded from variety AT-112, and minimum from BCT-5 and BCT-4 (47-49 days). The highest plant height was recorded from variety AT-111 and the lowest from BCT-4. Significantly the highest fruit/plant was recorded from variety BCT-4 which differed from other variety. Almost similar trend was followed in case fruit/cluster. But seed/fruit was significantly the highest from variety AT-110. Significantly the highest fruit weight was obtained from variety AT-112 followed by AT-112. The highest yield/plant was recorded from variety AT-113 followed by AT-112. Similar trend was followed in case of yield in 2002-03. Although higher no. of fruits/plant and fruit/cluster in variety BCT-4 and BCT-5 but failed to gave higher yield than At-112 due to less weight of fruit and yield/plant.

From three years result from Bogra showed that the variety AT-112 gave the highest yield (58-92 t/ha) but moderate yield could be obtained from variety AT-111, AT-113 and AT-110 (47-55 t/ha). Though BCT-4 and BCT-5 showed the lowest yield but farmers are interested due to its colour, shape and size. At Jessore, the variety AT-112/AT-113 performed better performance.

RARS, Jessore

Plant the height, fruit/cluster, fruit/plant, yield/plant and yield were significantly affected by variety. Significantly the highest plant height was obtained from BCT-5 but significantly the highest fruit/cluster was recorded from BCT-4. The variety BCT-4 & BCT-6 showed similar fruit/plant. Yield/plant gave higher from variety BARI Tomato-1 followed by BARI Totamo-2. The variety BARI Tomato-1 showed higher yield but statistically at par to BARI Tomato-2, BCT-6 and BCT-4.

Table 1. Performance of different characters of six cherry tomato varieties at ARS, Bogra, 2002-2003.

Variation	Days to	Plant	Emuit/	En uit/	Seed/	Average	Yield/		Yield		
line	50% flowering	height (cm)	plant	cluster	fruit (no.)	(g fruit wt.)	plant (kg)	00-01	01-02	02-03	Mean
AT 440		400.01	44.1	4.04	400 5	04.57	4.50	45.00	50.00	40 771	40.00
AT-110	61b	182.0b	41d	1.81C	102.5a	61.57b	1.52b	45.83C	52.08C	49.77b	49.22
AT-111	56c	188.9a	40d	1.88c	77.67b	70.18a	1.45b	49.74bc	59.85b	48.17b	52.59
AT-112	63a	185.6a	36d	1.90c	76.50b	73.81a	1.73a	55.96a	61.55a	57.75a	58.42
AT-113	52b	186.3a	106c	2.75b	62.17c	40.68c	1.89a	52.61b	54.01bc	61.20a	55.99
BCT-4	49c	144.0c	370a	4.12a	9.17e	2.37d	0.81c	26.69d	27.85d	27.03c	27.19
BCT-5	47f	142.6c	312b	3.89a	13.83d	2.84d	0.74c	27.16d	33.39d	26.22c	28.52
CV(%)	1.54	1.49			5.66	12.55	10.17	14.15	12.29	11.24	

Table 2. Performance of different characters of six cherry tomato varieties at RARS, Jessore, 2002-03

Treatment	Plant height	Fruit/	Emit/plant	Yield/plant	Av. fruit	Viald (t/ha)
(variety/line)	(cm)	Cluster	Frun/plain	(g)	wt. (g)	r leid (vila)
BCT-4	87.73bc	11a	147a	632.6b	4.32	14.7ab
BCT-5	99.77a	10b	119ab	602.1b	5.06	13.56bc
BCT-6	81.57d	10b	139a	660.4b	4.78	16.08ab
BCT-7	83.52cd	10b	98b	429.6c	4.46	9.78c
BARI Tomato-1	92.23b	5c	23c	853.8a	38.10	19.34a
BARI Tomato-2	74.78e	5c	21c	741.7ab	35.07	16.76ab

STUDIES ON TURMERIC BASED INTERCROPPING SYSTEM

Abstract

The experiment was conducted at MLT site Moulvibazar in 2001-02 & 2002-03. On an average, intercropping of turmeric with wax gourd may be profitable instead of sole turmeric or country bean cultivation. Other cultivation failed to show higher benefit cost ratio than sole country bean but all other cultivation showed higher BCR than sole turmeric.

Introduction

Turmeric is a popular spice crop in Bangladesh. It has multiple uses in dying industries, medicines, culinary preparations and in cosmetics. It is a long duration crop with slow growth in the early stages. Turmeric can be cultivated in shady places as they are shade tolerant crops. So, vegetables can be intercropped with turmeric supported on bamboo on the turmeric plot. Cucurbits and legumes like country bean and yard long bean can easily be grown with supports of bamboo sticks as they are creeping and climbing type of vegetables.

Farmers of Sylhet district usually grow country bean in vast areas mainly as high land field crops. The variety used for country bean is locally called 'Gohalghadda' and very popular to Sylhet's peoples. This variety is now exporting to U.K. On the other hand in Hobigonj district considerable areas of land under turmeric cultivation as a sole crop. In this context, the present investigation was undertaken to know the performance of turmeric based intercropping systems in the Sylhet region.

Materials and Methods

The experiment was conducted at MLT site, Moulvibazar during 2001-02 & 2002-03. The design was used in RCB with three replications. Plot size was 4 m × 4 m. Five different treatment combination such as Turmeric + wax gourd/country bean, Turmeric + bitter gourd/country bean, Turmeric + country bean, Turmeric sole and country bean sole. Turmeric seeds were sown on 25 April, 2001 and 14 April 2002. Four holes/ pits were made to sow cucurbits seeds at every corner of the plot on the same date of turmeric sowing. Country bean seeds were sown into the same pit on 10 August 2001 and 25 July 2002 just after harvest of cucurbits. For both the experiment turmeric crop was fertilizer @ 10 cowdung and 90-72-120 kg of N, P₂O₅ and K₂O/ha, respectively. Incase of cucurbits and country bean were allowed to climb on the bamboo support and Yard long bean was allowed to creep with bamboo stick. Earthing up and weeded was done at twice. The average crop duration for turmeric was around 265 days. Cost and benefit analysis was done for each treatment on a hectare basis taking into account the market value of each crop.

Results and Discussion

Yield of turmeric: On an average, maximum turmeric yield (20.90 t/ha) was obtained from turmeric + wax gourd relayed with country bean, followed by turmeric + bitter gourd/ country bean at 19.95 t/ha. The lowest turmeric yield is 18.74 t/ha in sole situation. This reduction is sole cropping situation might be the case of growing turmeric under open sunshine as it likes to grow under partial shade (Table 1).

Yield of cucurbits: Among two gourd, higher yield (13.55 t/ha) was obtained from wax gourd. The yield variations between two cucurbits were due to the reason of bearing habit and genetic yield potentiality (Table 1).

Yield of country bean: Sole country bean produced higher pod yield (10.09 t/ha) than in intercrop combinations (Table 1).

Turmeric equivalent yield: All the intercropping situations showed higher equivalent yield than that of the sole crop. The highest turmeric equivalent yield (52.40 t/ha) was obtained from turmeric + wax gourd relayed with country bean (Table 1).

Economic analysis: The economic performance of different intercropped and sole situations were presented in Table 2. The highest gross return (Tk. 320146/ha) and gross margin (Tk. 248270/ha) was recorded in turmeric + wax gourd/country bean combinations followed by turmeric + bitter gourd/ country bean combinations. Benefit cost ratio was also the highest in turmeric + wax gourd/country bean (4.45) combinations. All the intercropping situation showed higher BCR than sole turmeric but only turmeric + was gourd/country bean revealed higher benefit than sole country bean.

The results showed that turmeric intercropping with cucurbits (wax gourd) relayed with country bean gave higher turmeric equivalent yield and monetary advantages than other sole crop combinations. So, farmers of the Moulvibazar region could be motivated to grow turmeric as intercrop with wax gourd relayed with country bean instead of growing sole turmeric and country bean.

Table 1. Yield of turmeric, country bean, cucurbits and turmeric equivalent yield of sole and
intercropping combinations at MLT site Moulvibazar during 2001-02 & 2002-03

Trootmonto	Turmeric yield (t/ha)		Country bean yield (t/ha)		Wax gourd yield (t/ha)		Bitter gourd yield (t/ha)		d (t/ha)	TEY			
Treatments	01-02	02-03	Mean	01-02	02-03	Mean	01-02	02-03	Mean	01-02	02-03	Mean	(t/ha)
T+WG+CB	22.54	19.25	20.90	7.25	8.60	7.92	14.42	12.68	13.55	-	-	-	52.4
T+BG+ CB	21.10	18.80	19.95	7.64	9.10	8.37	-	-	-	7.15	6.72	6.94	48.10
T+CB	20.82	18.10	19.46	8.50	10.25	9.38	-	-	-	-	-	-	36.80
T sole	18.74	17.60	18.17	-	-	-	-	-	-	-	-	-	18.17
CB sole	-	-	-	9.05	11.12	10.09	-	-	-	-	-	-	18.66

T= Turmeric, WG= Wax gourd, BG= Bitter gourd, CB= Country bean, TEY= Turmeric equivalent yield

Table 2. Cost and return analysis of sole and intercropping combination of turmeric, country beans and cucurbits at MLT Moulvibazar, 2001-02 & 2002-03 (average of two years)

Treatment	Gross return	Total variable	Gross margin	Benefit cost ratio
Treatment	(Tk/ha)	cost (Tk/ha)	(Tk/ha)	(BCR)
T + WG + CB	320140	71870	248270	4.45
T + BG + CB	302640	72660	229980	4.17
T + CB	231600	61540	170060	3.76
T sole	105600	36730	68870	2.88
CB sole	133440	30070	103370	4.43

T= Turmeric, WG= Wax gourd, BG= Bitter gourd, CB= Country bean

Crops	Price (Tk./kg)			
crops	2001-02	2002-03		
Turmeric	6.00	6.00		
Country bean	10.00	12.00		
Wax gourd	7.00	8.00		
Bitter gourd	10.00	12.00		

176

PERFORMANCE OF POTATO YAM GROWN ON DIFFERENT SUPPORT

Abstract

The experiment was conducted at Regional Agricultural Research Station, Jamalpur from March 2001 to January 2002 and April 2002 to January 2003 to determine the suitable support of potato yam grown on different supporting materials viz. i) Cut tree branches, ii) Bamboo trellis and iii) Vertical bamboo support. The experiment was laid out in a randomized complete block design with three replications. On an average, results indicated that the highest total weight of yam/plant was found from bamboo trellis.

Introduction

Potato yam (*Dioscoria bulbifera*), botanically a bulbil, locally known as *Gach Aloo*, is an uncommon vegetable. The plant is climbing creeper. It is usually grown without care in the homestead trees. The plant is propagated vegetative and once sown, it does not require recurrent sowings. It grows from April to January. Its harvest can be extended up to October whereby supply of the vegetables can be prolonged. Recent studies revealed that it could give a substantial yield. But the farmers do not grow it extensively. Research studies indicated that there is a scope for its production through homestead plantation system. But studies on growing potato yam on other supporting material are very meagre. Therefore, to determine the suitable support of potato yam grown on other supporting materials, the experiment was conducted to find out the suitable support of potato yam.

Materials and Methods

The experiment was conducted at Regional Agricultural Research Station, Jamalpur during the period from March 2000 to January 2001 and April 2002 to January 2003 .Three supports viz. i) Cut tree branches, ii) Bamboo trellis and iii) Vertical bamboo support were considered as the treatment. Single standard sized germinated yam seed (average weight of 120 g) was planted in the pit in the third week of April, 2001. Well decomposed 5 kg cowdung, 25 g urea, 20 g TSP and 30 g MP/pit was applied and mixed with the soil before planting. Each pit was weeded twice during the entire production period. The yam started flowering in the middle of September and harvesting began from November in both the years. The periodical harvesting continued up to January 2002. The data on yield were statistically analyzed and the means were separated as per LSD test.

Results and Discussion

Results indicated that total weight of yam/plant was obtained from bamboo trellis which was identical to cut tree branches. Vertical bamboo support produced the lowest yam/plant (Table 1).

Common and	Total weight of yam/plant (kg)				
Support	2001-02	2002-03			
Cut tree branches	4.8a	3.57b			
Bamboo trellis	5.9a	5.47a			
Vertical bamboo support	2.8b	3.38b			
F	*	*			
CV%	10.19	8.07			

 Table 1. Performance of potato yam grown on different supporting materials at Narikeli, Jamalpur during 2001-03

Figure in a column having similar/no letter do not differ significantly

IMPROVEMENT OF PRODUCTIVITY OF YAM THROUGH INTENSIFICATION OF SPACING

Abstract

The experiment on planting distance of yam (Dioscorea alata) was conducted at RARS farm, Jessore during 2002-2003 in RCBD with four replications. Three planting distance viz. $3.0 \times 3.0 \text{ m}$, $1.5 \times 1.5 \text{ m}$ and $1.0 \times 1.0 \text{ m}$ were studied. The yam was allowed to grow on ground. The number and yield of both nodal rhizome and main rhizome increased gradually with the increase of spacing. Significantly the highest total yield (14.28 t/ha) was obtained from $1.0 \times 1.0 \text{ m}$ spacing.

Introduction

Homesteads are intensively used farming units in Bangladesh agriculture. About 85 percent of the total population in Bangladesh lives in the rural areas (FAO, 1986). Almost every household in rural areas has a homestead. The homesteads are used intensively for growing different types of fruit and forest trees and vegetables along with other uses. Previous studies suggest that crop intensification is one of the ways to improve productivity of the homestead production system (Abedin and Quddus, 1990; Alam *et al.*, 1990).

Yam (*D. alata*) is a traditional creeper vegetable usually grown on the homestead trees. It is a popular and costly vegetable but not gown widely. Little attention has been given on this crop in the past to improve its productivity. *D. alata* is grown mainly for underground rhizome. The yam plants also produce aerial bulbils from the nodes. The aerial bulbils do not grow bigger in size. There are usually not consumed as vegetable, since they are not as tasty as the underground rhizome. It was assumed that these aerial bulbils might grow bigger in size and become tasty if they are allowed to grow in the ground. Yield of the crop might also be enhanced with this production technique. Research on these aspects of the crop has not yet been done in the country. The present study was therefore conducted with the objectives to improve productivity of the crop through intensification of spacing and to identify the optimum spacing for growing yam on the ground.

Materials and Methods

The experiment was conducted at the Regional Agricultural Research Station farm, Jessore during 2002-2003. The experiment was laid out in RCBD with four replications. Three planting spacing viz. 3 m x 3 m, 1.5 m x 1.5 m and 1.0 m x 1.0 m were studied. The yam species *Dioscorea alata* was used as the test species. The unit plots measured 3.0 m x 3.0 m. Pits measuring 50 cm x 50 cm x 50 cm were prepared along with cowdung application during the fourth week of May. Well-rotten cowdung was applied at the rate of 5 kg per pit. Yam was planted also during the third week of April. The yam plants were allowed to grow on the ground. The crop was weeded thrice during the first and fourth week of June. The crop was harvested during the third week of February, 2003. Data on the number and yield of nodal rhizome and main rhizome were recorded and analyzed statistically.

Results and Discussion

Performance of yam (*D. alata*) grown with different spacing on the ground presented in Table 1. The yam grow well on the ground. The number and yield of both nodal rhizome and main rhizome were increased gradually with the reduction of the spacing. The yam yield with $1.5 \times 1.5 \text{ m}$ and $1.0 \times 1.0 \text{ m}$ spacing increased by about 2.50 and 4.21 fold, respectively over that with $3.0 \times 3.0 \text{ m}$ spacing. It is to be noted that the nodal rhizome, contributed a significant amount to the total yam yield. Significantly the highest total yield (14.28 t/ha) was obtained from closer spacing ($1.0 \times 1.0 \text{ m}$). It is therefore evident that the yield of yam could be increased greatly with reducing the spacing from $3.0 \times 3.0 \text{ m}$ to $1.0 \times 1.0 \text{ m}$. The yam yield might also be increased further with further reduction of spacing. The study will be continued for the next one year for making a sound conclusion.

Second	Nodal r	hizome	Main r	Total yield	
Spacing	Number/ha	Yield (t/ha)	Number/ha	Yield (t/ha)	(t/ha)
3.0m x 3.0m	63889	1.22b	1111	2.17c	3.39c
1.5m x 1.5m	150000	3.14ab	4444	5.42b	8.56b
1.0m x 1.0m	216666	5.19a	10000	9.09a	14.28a

Table 1. Effect of spacing on the performance of yam grown on the ground at RARS, Jessore during 2002-03

References

- Abedin, M.Z. and Quddus, M.A., 1990. Homestead fuel situation, Homegarden and Agroforestry practice at six Agro-ecologically different location of Bangladesh, Homestead plantation and Agroforestry in Bangladesh. pp 19-53.
- Alam, M.S., M.F. Haque, M.Z. Abedin and S. Aktar. 1990. Homestead trees and household fuel uses in and around FSR site, Jessore. In Proceedings of a National Workshop on 'Homestead Plantation and Agroforestry in Bangladesh' held on 17-19 July 1988 in Joydebpur, Bangladesh, pp. 105-119.
- FAO, 1986. Community Forestry Handbook. ADB Community Forestry Project. FAO/UNDP/ BGD/81/028, Dhaka, p. 60.

INTERCROPPING OF YARD LONG BEAN WITH CHILLI

Abstract

The experiment was conducted at farmers' field in Hathazari of Chittagong district during December 2001 to May 2002 and December 2002 to May 2003 to identify adequate plant population of Yard long bean and to determine the proper sowing time of Yard long bean with Chilli in Yard long bean and Chilli intercropping systems. Three plant populations of Yard long bean viz., 10, 20 & 30 %, and four sowing times of Yard long bean viz., at the time of Chilli planting, 30 days after Chilli planting & 90 days after Chilli planting were studied. Twenty percent of yard long bean plant population at the time of Chilli planting showed the highest chilli equivalent yield (1.92 t/ha) and benefit-cost ratio (4.00).

Introduction

The farmers of Chittagong region usually grow yard long bean scaterdly with Chilli and used Chilli plant as support of yard long bean. They do not maintain definite plant population and exact sowing time of yard long bean. They also do not measure the cost and return analysis of this intercropping systems. The literature in this regard is meagre. The present study was, therefore, taken in hand to know the proper sowing time, adequate plant population and also cost and return analysis of chilli and Yard long bean intercropping systems.

Materials and Methods

The experiment was conducted at farmers' field in Hathazari of Chittagong district during December 2001 to May 2002 and December 2002 to May 2003. The land was medium high land having sandy loam in nature. The experiment was laid out in a randomised complete block design with four dispersed replications. Three plant populations of Yard long bean viz., 10, 20 & 30 %, and four sowing times of Yard long bean viz., at the time of Chilli planting, 30 days after Chilli planting, 60 days after Chilli planting & 90 days after Chilli planting were studied. The treatment combinations were as follows:

T₁= Sole Chilli T₂=Chilli + 10 % Yard long bean at the time of Chilli planting T₃= Chilli + 20 % Yard long bean at the time of Chilli planting T₄= Chilli + 30 % Yard long bean at the time of Chilli planting T₅= Chilli + 10 % Yard long bean at 30 days after Chilli planting T₆= Chilli + 20 % Yard long bean at 30 days after Chilli planting T₇= Chilli + 30 % Yard long bean at 30 days after Chilli planting T₈= Chilli + 10 % Yard long bean at 60 days after Chilli planting T₉= Chilli + 20 % Yard long bean at 60 days after Chilli planting T₁₀= Chilli + 30 % Yard long bean at 60 days after Chilli planting T₁₁= Chilli + 10 % Yard long bean at 90 days after Chilli planting T₁₂= Chilli + 20 % Yard long bean at 90 days after Chilli planting T₁₃= Chilli + 30 % Yard long bean at 90 days after Chilli planting T₁₄= Sole Yard long bean

Chilli and yard long bean (fruit type short and whitish-green in colour) variety was Hathazari local. Unit plot size was 6 m x 3 m. Spacing of Chilli was 50 cm x 15 cm and spacing of sole yard long bean was 150 cm x 30 cm. Chilli was planted in the 2nd week of December in both the years and ripened chilli was harvested during 2nd week of April to last week of May. Yard long bean was sown according to treatments and was harvested during 3rd week of March to 3rd week of May by hand picking at 3 days interval. Fertilizer was applied at 100 Kg N, 64 Kg P, 100 Kg K per hectare in the form of Urea, Triple super phosphate and muriate of potash. Entire TSP and MP were applied as basal dose. Urea was applied in three equal splits at 15, 35 & 65 days after planting of Chilli. Gap filling of

Chilli was done after 12 days of planting. Irrigation was applied 3 times at 15, 35 and 65 days after planting. Weeding, earthing up and other intercultural operations were done as and when necessary. plant protection measures against aphids and fruit borer was taken. Data on yield of Chilli (dried) on whole plot basis, number and weight of Chilli per plant, and 100 Chilli weight were recorded and analysed statistically. Data on yield of green yard long bean, number and weight of yard long bean were recorded. Chilli equivalent yield and benefit cost ratio was analysed . Maximum temperatures for the month of Nov., Dec., Jan., Feb., March, April and May at RARS, Hathazari, Chittagong during were 29.9, 29.3, 30.5, 29.8, 30.7, 30.8 and 31.7^{0c} and minimum temperatures for those month were 16.9, 11.8, 14.6, 13.5, 18.8, 22.6and 23.37^{0c}. Rainfall for the month of Nov., Dec., Jan., Feb., March, April and May at RARS, Hathazari, Chittagong were 91.9, 90.9, 91.7, 91.0, 78.7, 91.6 and 91.93 mm.

Results and discussion

Number, weight and yield of dried Chilli were significantly varied in both the years (Table1). The higher number of Chilli per plant was found from treatment T_1 where sole Chilli was grown in both the years but was statistically similar to treatments T_{11} , T_{12} & T_{13} in 2001-2002. Due to higher competition with yard long bean, Chilli number per plant was lower at the time of Chilli planting but after that there was an increasing trend due to lesser competition with the late planting of yard long bean. At early planting time, there was an decreasing trend of chilli per plant with the increasing of yard long bean plant population. Similar trend was found in case of weight of Chilli per plant and yield of Chilli in both the years. Number and weight of yard long bean per plant decreased with the later planting , but increased with the higher plant population of yard long bean (Table 2). When yard long bean was sown at 90 days after Chilli planting but increased with the increase of yard long bean plant population. Highest chilli equivalent yield was recorded from chilli + 20% YLB. It was noted that 10 to 30% population of yard long bean showed higher CEY than sole Chilli. Other intercropped treatments failed to show higher CEY than sole chilli. Similar trend was followed in case of gross returns and benefit cost ratio.

Recommendation

From two year result showed that higher yield and monetary benefit was recorded from chilli+30% YLB at the time of chilli planting. So, farmers of Chittagong should be motivated to grow chilli+YLB instead of chilli.

Traatmont	Fruit/pl	ant (no.)	Wt. of fru	uit/plant (g)	Fruit yie	eld (t/ha)
Treatment	2001-02	2002-03	2001-02	2002-03	2001-02	2002-03
T_1	23.03a	28.53a	61.17a	65.78a	1.30a	1.60a
T_2	15.97def	18.82de	39.00c	44.96e	1.00b-е	1.20de
T ₃	15.97def	16.01fg	36.83c	36.92f	0.96c-g	1.06ef
T_4	14.33ef	13.17h	37.67c	32.62g	0.73e	0.96f
T ₅	15.03ef	19.21de	40.33c	47.18de	1.06a-d	1.28cd
T_6	14.33ef	17.23ef	39.00c	43.73e	0.95с-е	1.15de
T_7	13.20f	14.24gh	36.83c	36.15fg	0.91de	0.97f
T_8	19.03cd	22.64c	54.67ab	61.04bc	1.13a-d	1.53ab
T9	17.07cde	22.28c	54.67ab	58.28c	1.13a-d	1.46ab
T ₁₀	19.07bcd	20.02d	47.00bc	50.34d	1.18abc	1.41bc
T ₁₁	21.10ab	26.04b	60.33a	63.45ab	1.22ab	1.58a
T ₁₂	21.03ab	25.67b	54.00cd	49.91bc	1.20abc	1.48ab
T ₁₃	19.80abc	24.58bc	52.67ab	58.38c	1.16abc	1.45ab
T_{14}						
LSD(0.05)	3.246	2.216	11.26	3.866	0.2323	0.1507
Cv (%)	10.94	6.37	14.15	4.53	13.01	6.59

Table 1. Yield and yield attributes of Chilli in yard long bean and chilli intercropping system (Hathazari, Chittagong in 2001-02 and 2002-03)

Treatment	Fruit/pla	ant (no.)	Fruit wt./p	olant (Kg)	Fruit yie	eld (t/ha)
Treatment	2001-02	2002-03	2001-02	2002-03	2001-02	2002-03
T ₁						
T_2	196	182	1.81	1.78	2.86	3.22
T_3	136	122	1.29	1.17	5.68	5.14
T_4	118	98	1.09	0.96	5.83	5.36
T ₅	72	68	0.55	0.59	0.82	0.86
T_6	33	38	0.41	0.42	0.93	0.97
T ₇	35	33	0.28	0.31	1.72	1.39
T_8	16	26	0.15	0.22	0.10	0.29
T9	12	18	0.08	0.14	0.33	0.41
T_{10}	10	14	0.09	0.11	0.47	0.53
T ₁₁	0	0	0	0	0	0
T ₁₂	0	0	0	0	0	0
T ₁₃	0	0	0	0	0	0
T ₁₄	54	49	0.47	0.45	8.69	8.32

Table 2. Yield and yield attributes of Yard longbean in yard long bean and chilli intercropping system (Hathazari, Chittagong in 2001-02 and 2002-03)

Table 3. Chilli equivalent yield, and cost and return analysis of yard long bean and chilli intercropping system (Hathazari, Chittagong average of 2001-02 and 2002-03)

	Yield (t/ha)		Chilli	Gross return	Total	Benefit-cost	
Treatment	Chilli	Yard long bean	equivalent yield (t/ha)	(Tk./ha)	variable cost (Tk./ha)	ratio	
T_1	1.45		1.45	101500	31710	3.20	
T_2	1.10	3.40	1.66	116200	32810	3.54	
T ₃	1.01	5.41	1.92	134400	33610	4.00	
T_4	0.85	5.60	1.79	125300	34110	3.67	
T ₅	1.17	0.84	1.32	92400	32710	2.82	
T_6	1.05	0.95	1.21	84700	33310	2.54	
T_7	0.94	1.56	1.21	84700	33810	2.51	
T_8	1.33	0.20	1.42	99400	32810	3.03	
T9	1.30	0.37	1.36	95200	32225	2.95	
T_{10}	1.30	0.50	1.38	96600	32850	2.94	
T ₁₁	1.40	0	1.40	98000	32300	3.03	
T ₁₂	1.34	0	1.34	93800	32300	2.90	
T ₁₃	1.31	0	1.31	91700	32300	2.84	
T ₁₄		8.51	1.41	98700	37850	2.61	

Price:

Chilli= 12.00 Tk./kg

Yard long bean = 70.00 Tk./kg.

STUDY ON THE LATE PLANTING POTENTIAL OF TOMATO VARIETIES IN THE RABI SEASON UNDER AEZ-23

Abstract

The experiment was conducted at Regional Agricultural Research Station, Hathazari, Chittagong during November 2002 to May 2003 to study the late planting potential of BARI released summer tomato varieties in Chittagong region (AEZ-23). Three varieties (BARI Tomato 4, BARI Tomato 5 and BARI Tomato 6) and five sowing dates (December 1, 2002, December 16, 2002, January 1, 2003, January 16, 2003 and February 1, 2003) were studied. Considering yield and benefit-cost ratio, BARI Tomato 4 and BARI Tomato 5 could be sown up to 16th January as late crop.

Materials and Methods

The experiment was conducted at Regional Agricultural Research Station (RARS), Hathazari, Chittagong during November 2002 to May 2003. The land was medium high land having sandy loam in nature. The experiment was laid out in a two factor randomised complete block design with three replications. Three varieties (BARI Tomato 4, BARI Tomato 5 and BARI Tomato 6) and five sowing dates (December 1, 2002, December 16, 2002, January 1, 2003, January 16, 2003 and February 1, 2003) were studied. Unit plot size was 3 m x 4 m. Spacing was 60 cm x 50 cm. Thirty days old tomato seedling was planted at each planting date. Fertilizer dose per hectare was cowdung 10 ton, N 100 Kg, P₂O₅ 75 Kg, K₂O 125 Kg, Gypsum 150 Kg, Boric acid 7.5 Kg and NH₄ Molibdate 550 Gram. Half of cowdung, P₂O₅ & total amount of Gypsum, Boric acid & NH₄ Molibdate are to be applied the final land preparation. The remaining 50% cowdung & P₂O₅ are to be applied during pit preparation prior to planting. The rest N and K₂O are to be applied in 2 equal installments at 21 and 35 days after transplanting. Irrigation, weeding and other intercultural operations, staking, etc. were done as and when necessary. Tomato fruits are partially infested by fruit borer specially in BARI Tomato 6. A few plants of BARI Tomato 4 and BARI Tomato 5 were also virus infected. Tomato fruits were harvested by hand picking at two days interval. Data on Fruits per plant, weight of fruits per plant, fruit yield (whole plot basis), plant height and harvest period were recorded and analysed statistically. Cost and return analysis was also performed. Maximum temperatures for the month of Nov., Dec., Jan., Feb., March, April and May at RARS, Hathazari, Chittagong during were 29.9, 29.3, 30.5, 29.8, 30.7, 30.8 and 31.7^{0c} and minimum temperatures for those month were 16.9, 11.8, 14.6, 13.5, 18.8, 22.6and 23.37^{0c}. Rainfall for the month of Nov., Dec., Jan., Feb., March, April and May at RARS, Hathazari, Chittagong were 91.9, 90.9, 91.7, 91.0, 78.7, 91.6 and 91.93 mm.

Results and discussion

Treatments showed significance effect on plant height, number of fruits per plant, weight of fruit per plant, fruit yield and also harvest period (Table 1). Significantly higher plant height was recorded from BARI Tomato -6 when sown on 1st December. There was a trend to decrease plant height with late sowing up to 16 January of all varieties. December 1 to December 16 showed higher fruit/plant in BARI Tomato 5 & BARI Tomato-4. BARI Tomato-6 showed lowest fruit/plant when shown from December 1 to January 16. Fruits/plant revealed higher from variety BARI Tomato-4 but statistically identical to BARI tomato-5 & BARI Tomato-6 when sown from December1 to December 16. Higher fruit yield was recorded from BARI tomato-4 when sown on December 1but statistically at par to BARI Tomato-5. The variety BARI Tomato –6 found long time to harvest when sown in December 1. Higher gross return and gross margin was obtained from variety BARI Tomato-6. When sown on 1 December but close to BARI tomato-5 and BARI Tomato-4. Similar trend was noted in case of benefit cost ratio. But it was noted that all the varieties showed reasonable higher BCR because of price of Tomato at that time higher. From one year result showed that all the variety (BARI Tomato-4, BARI Tomato-5 and BARI Tomato-6) could be sown from 1 December to 16 January but higher monetary could be obtained when sown in December and late January but first week to Mid January showed lower BCR because of market price of Tomato was lower at that time.

Traatmant	Plant ht (cm)	Fruits/plant	Fruit wt./plant	Fruit yield	Period of
Treatment	Flant III. (CIII)	(No.)	(Kg)	(t/ha)	harvest (Day)
S_1V_1	77.73g	55.47ab	2.03a	59.25a	39b
S_1V_2	92.30e	56.93a	1.97ab	59.60a	30c
S_1V_3	124.10a	18.57f	1.56abcd	51.54bc	43a
S_2V_1	72.40hi	56.87a	1.84abc	51.59bc	25def
S_2V_2	75.43gs	53.10abc	1.55abc	53.74ab	24efg
S_2V_3	115.70b	18.90f	1.43cd	46.93cd	37b
S_3V_1	70.39i	45.03bcd	1.48bcd	46.79bcd	22fg
S_3V_2	74.87gh	44.20cd	1.40cd	46.82cd	21g
S_3V_3	112.30c	18.07f	1.26def	35.44e	28cd
S_4V_1	54.97k	35.60de	1.31de	43.09d	21g
S_4V_2	61.02j	42.93cd	1.35cd	41.89d	21g
S_4V_3	102.70d	18.33f	1.47bcd	35.30e	26de
S_5V_1	52.10k	27.33ef	0.75g	17.98fg	14h
S_5V_2	52.80k	30.87e	0.84efg	18.76fg	14h
S_5V_3	85.37f	17.80f	0.80fg	16.96g	21g
CV (%)	2.30	16.61	18.95	8.81	8.75
LSD (0.05)	3.14	9.99	0.44	6.19	3.76

Table 1. Yield and yield attributes of tomato as affected by sowing time and variety conducted at RARS, Hathazari, Chittagong in 2002-03

 S_1 = December 1, 2002, S_2 = December 16, 2002, S_3 = January 1, 2003, S_4 = January 16, 2003, S_5 = February 1, 2003 and V_1 = BARI Tomato 4, V_2 = BARI Tomato 5, V_3 = BARI Tomato 6

Table 2. Harvest period and cost and return analysis of tomato as affected by sowing time and variety conducted at RARS, Hathazari, Chittagong in 2002-03

Treatment	Gross return	Total variable cost	Gross margin	Deposit cost notio
Treatment	(Tk./ha)	(Tk./ha)	(Tk./ha)	Benefit-cost ratio
S_1V_1	296250	50553	245697	5.86
S_1V_2	298000	50553	247447	5.89
S_1V_3	309240	52328	256912	5.91
S_2V_1	206360	50553	155807	4.08
S_2V_2	214960	50553	164407	4.25
S_2V_3	234650	51960	182690	4.52
S_3V_1	187160	48107	139053	3.89
S_3V_2	187280	48107	139173	3.89
S_3V_3	177200	49200	128000	3.60
S_4V_1	215450	45328	170122	4.75
S_4V_2	209450	45328	164122	4.62
S_4V_3	211800	46136	165664	4.59
S_5V_1	107880	42136	65744	2.56
S_5V_2	112560	42136	70424	2.67
S_5V_3	118720	43228	75492	2.75

Average price of fruit of BARI Tomato 4 and BARI Tomato 5 for 1st, 2nd, 3rd, 4th & 5th sowing time were 5, 4, 4, 5 & 6 taka per kilogram respectively. On the other hand, the average price of fruit of BARI Tomato 6 for 1st, 2nd, 3rd, 4th & 5th sowing time were 6, 5, 5, 6 & 7 taka per kilogram respectively.

(Coastal Farming)

EFFECT OF SOWING TIME ON THE YIELD OF MUNGBEAN IN SALINE AREA

Abstract

An experiment was conducted at FSRD site, Atkapalia, Noakhali during the rabi 2001-03 to find out the optimum sowing time of Mungbean in saline area. Four sowing dates viz., 31 December, 10 January, 20 January and 2 February were included. On an average, among the sowing date maximum yield was obtained from 30 January sowing 756 kg/ha.

Introduction

Mungbean (*Vigna radiata* L. Wilczek) is one of the most important pulse crops in Bangladesh. It is one of the important sources of protein for both man and domestic animals. It has good digestibility and flavour. This crop, like other pulses, has the potential to enrich soils through nitrogen fixation. In the FSRD site Atkapalia, Noakhali, Mungbean is cultivated in the pre-kharif season when salinity is a major problem. Salinity increases in the root zone through upward movement of moisture and affects the crop. As a result yield decreases. If Mungbean sown in time it could be harvested avoiding the effect of salinity before increasing of salinity to its peak period. So time of sowing is very important for Mungbean cultivation successfully. With the view in mind, it is needed to know the optimum sowing time of Mungbean after harvest of T.Aman rice.

Materials and Methods

The experiment was conducted at FSRD site, Atkapalia, Noakhali during rabi season 2001-03. The design of the experiment was RCB with four dispersed replications. The unit plot size was 8 m x 4 m. The variety of Mungbean was BARI Mung-4. Field was fertilized with 45, 85 and 35 kg/ha of urea, TSP and MP, respectively. All fertilizers were applied as basal during each time of sowing. Four sowing times were i.e. 31 December, 10 January, 20 January and 30 January included as treatment. Salinity and moisture of the field were recorded by collecting soil from the date of sowing and every 15 days interval up to harvesting. Data on plant height, plant/m², branch/plant, and pods/plant were recorded from 10 randomly selected plants. Seed yield was determined as whole plot basis. The collected data were analyzed statistically and means were separated with LSD test.

Results and Discussion

Plants height, branch/plant, pods/plant, length of pod, seeds/pod and seed yields were significantly influenced by different sowing dates except 1000-seed weight. Plant height showed higher in 30 January sowing followed by 20 & 10 January sowing. Plants/m² was influenced by sowing date where 30 and 20 January date identical. Significantly the highest pod/plant was obtained from 30 January sowing Seed/pod was statistically identical except 31 December sowing. Seed yield increased with the advancement of date of sowing where 30 January sowing showed maximum yield followed by 20 January sowing. From the above study it may revealed that 20 January to 30 January could be feasible to Mungbean at saline area, Noakhali.

Table 1. Yield and yield attributes of Mungbean by different sowing dates atFSRD site, Atkapalia,
Noakhali during 2002-03

Traatmant	Plant	Plant/	Pod	Pod length	Seed	1000-seed	Seed yiel	d (kg/ha)
Treatment	ht. (cm)	m^2	/Plant	(cm)	/pod	wt (g)	01-02	02-03
31 December	28.66b	35.0b	8b	7.44b	7.06b	40.98	323c	335c
10 January	30.33a	33.8b	10a	8.30a	9.36a	41.68	501bc	365c
20 January	31.94a	40.8ab	11ab	8.83a	9.64a	41.68	687ab	563b
30 January	32.18a	45.6a	14a	8.78a	9.84a	41.64	791a	722a
LSD (0.05)	1.96	7.86	3.37	0.72	0.81	NS	252.2	136.0
CV (%)	4.59	14.59	23.20	6.31	6.57	1.64	27.40	19.89

EFFECT OF TIME OF SOWING ON THE PERFORMANCE OF MUNGBEAN VARIETIES IN THE SOUTHERN REGION OF BANGLADESH

Abstract

On-farm experiment was conducted at Farming Systems Research and development (FSRD) site Lebukhali to determine optimum sowing time and variety of Mungbean for the southern region of Bangladesh during the rabi seasons of 2002-03. Four varieties, viz. BARI Mung-2 (Kanti) ,BARI Mung-3, BARI Mung-4, and BARI Mung-5 were sown at four different dates i.e. 1 January, 15 January, 1 February and 15 February. Result revealed that 15 February sowing showed the highest yield (144 kg/ha) with variety is BARI Mung-5

Introduction

Mungbean (*Vigna radiata* L. Wilczek) is one of the most important pulses crop in Bangladesh. Mungbean is cultivated with minimum land preparation, without weed control, fertilizer application, and diseased control. All these factors are responsible for poor yield of Mungbean. Average Mungbean yield is 514 kg/ha in Bangladesh. About 57.5% of total Mungbean cultivated area is at southern region on coastal belt of Bangladesh. Farmers at this region did not pay due attention to the Mungbean cultivation. They cultivated Mung bean under rainfed condition under residual moisture with minimum management. In greater Patuakhali district about 70% of the arable land remains fallow during winter. Again among the crops grown in 30% of the land pulse crop mainly Mungbean and khesari are the major rabi crops of this area.

Materials and Methods

The experiment was conducted in the farmers' field at Farming systems research and development (FSRD) site, Lebukhali (AEZ 13) during rabi seasons of 2002- 2003 under rainfed condition. The experiment was carried out using the split plot design with 4 replications. Sowing date constituted the main plots and cultivars in sub plots. Four date of sowing, such as, 1 January, 15 January, 1 February and 15 February and four varieties of *Vigna spp.* viz. BARI Mung-2 (Kanti), BARI Mung-3, BARI Mung-4 and BARI Mung-5 were used in the experiment. The unit plot size was 8 m x 5 m .The land was fertilized with NPK @ 10-8 -10 per hectare at final land preparation. Seeds were sown in line. The distance between the rows was 30 cm and between plants was continuous. The plants were sprayed with Malathion for the control of pod borer.

Effect of sowing dates

Results and Discussion

Significantly the highest plants/m² was recorded from 15 February sowing. Early sowing (1 January) showed the lowest plants/m² due to cool temperature affect germination (Table 1). Higher yield was obtained from 15 February sowing could be due to the highest plant population per square meter, pods/plant and 1000-seed weight. The lower seed yield obtained from January sowing was due to lower number of plant /m² because of lower temperature affects the germination.

Effect of cultivars

The cultivars significantly influenced on yield and yield contributing characters except seed/pods. Significantly the highest plants/m² was recorded from variety BARI Mung-5 and the lowest plants/m² was recorded from variety BARI Mung-3 which might be due to lower germination (Table-2). Plants/m² statistically identical in variety BARI Mung-2 and BARI Mung-4. Significantly the highest 1000-seed weight was recorded from variety BARI Mung-5. Significantly the highest seed yield was obtained from BARI Mung-5 which might be due to higher plants/m² and bolder 1000-seed weight. The lower yield (688 kg/ha) was recorded from BARI Mung-3 which might be due to less number of plants per meter and lower seed per pods.

Interaction between sowing dates and cultivars

Seed yield and other attributes were significantly influenced by the interaction of sowing dates and cultivars. The highest seed yield (1445 kg/ha) was produced by BARI Mung-5 when sown on 15 February. Higher seed yield of BARI Mung-5 than that of BARI Mung-2 (Kanti) might be due to higher plants per square meter and bolder seed weight.

The lowest yield was obtained from 1 January sowing by all cultivars probably due to lower temperature and wetness of soil. So, seeds could not be germinated properly. Many plants were affected by cold injury and most of them were damaged by lower temperature and wetness of soil. Thereby less number of plants/m² and seeds/pod was recorded. In constract, the above attributes were higher in 15 February. Thus the result suggested that under Patuakhali condition the optimum time of Mungbean sowing is the 2nd week of February. Among the cultivars tested BARI Mung-5 performed best followed by BARI Mung-2 (Kanti).

Date of	Plants/m ²	Pod/plant	Seeds/pod	1000-seed	Yield
sowing	(no.)	(no.)	(no.)	wt. (g)	(kg/ha)
Jan -1	20.67	10.95	7.67	27.88	496.00
Jan -15	28.95	10.02	9.74	27.91	774.69
Feb -1	34.06	9.92	9.44	28.06	877.83
Feb-15	39.13	11.27	9.41	28.35	1143.41
CV (%)	2.8	3.1	2.5	1.3	4.6
LSD	1.38	0.50	0.33	-	57.8

Table 1. Yield and yield components of Mungbean as affected by dates of sowing in rabi 2002-03

Table 2. Yield and yield components of Mungbean as affected by varieties in rabi 2002-03

Variaty	Plants/m ²	Plant height	Pod/plant	Seeds/pod	1000 seed	Yield
Variety (No.)	(cm)	(No.)	(No.)	wt. (g)	(kg/ha)	
V_1	31.19	40.86	11.00	8.99	24.71	758.38
V_2	30.93	41.52	10.47	8.61	24.62	687.93
V_3	31.69	41.45	10.24	8.88	24.61	708.29
V_4	32.08	42.55	10.36	8.80	38.44	1105.47
LSD(0.05)	0.64	1.70	0.42	-	0.66	34.10
CV %	1.3	2.0	2.5	3.5	1.5	2.6

V1= BARI Mung-2(kanti), V2= BARI Mung-3, V3= BARI Mung-4, V4 = BARI Mung-5

Souving time	Variaty	Plants /m ²	Pod/plant	Seeds/pod	1000 seed	Yield
Sowing time	variety	(no.)	(no.)	(no.)	wt. (g)	(kg/ha)
January 1	V1	19.80	11.41	7.56	24.88	431.61
	V2	19.63	10.47	7.49	24.48	376.71
	V3	20.38	10.39	7.67	24.19	404.58
	V4	22.88	11.23	7.85	37.95	711.08
January 15	V1	27.80	11.07	9.87	24.36	727.50
	V2	28.81	9.90	9.43	24.41	651.25
	V3	29.69	9.35	9.85	24.52	662.50
	V4	29.50	9.77	9.79	38.35	1057.50
February 1	V1	35.08	10.02	9.75	24.70	832.95
	V2	33.31	9.82	9.31	24.33	732.71
	V3	33.75	9.80	9.39	24.80	755.26
	V4	34.10	10.05	9.32	38.40	1190.39
February 15	V1	38.66	11.99	9.69	24.87	1095.75
	V2	38.94	11.35	9.15	24.85	987.50
	V3	39.56	11.16	9.70	24.86	1045.00
	V4	39.38	10.56	9.10	38.81	1445.39
LSD		2.14	0.89	0.73	1.25	99.01
CV (%)		5.7	6.2	4.8	2.6	9.2

Table 3. Yield and yield components of Mungbean as affected by sowing time and varieties in 02-03

YIELD MAXIMIZATION AND DETERMINATION FACTORS FOR HIGH YIELD OF MUNGBEAN

Abstract

The experiment was conducted in farmers' field at FSRD site, Lebukhali, Patuakhali during late rabi, 2003 to maximize the yield of Mungbean and find out the contribution of each factor for high yield of Mungbean. The result of the experiment reveals that full package produces the highest grain yield. There was no statistical difference between good tillage and minimum tillage. Treatment without fertilizer and without weed control produces statistically identical yield. There was statistically difference between irrigation and without irrigation. Pest reduced yield drastically this year. Farmers' practice produced the lowest yield.

Introduction

Mungbean is the major rabi crop grown in Patuakhali area. But Mungbean is grown in very low management practices, such as less tilth of land, without any fertilizer, weed and pest control and irrigation practices. As a result, yield of Mungbean is very low (300-500 kg/ha) and mostly depend of climatic condition, disease and insect infestation. Previous studies revealed that yield of Mungbean could be obtained up to 1.5 t/ha, which in return produces higher gross margin (net benefit) than cumulative gross margin of T.Aus and T.Aman rice, the major crops of the region. So, this trial will be conducted to give emphasis in cultivation of Mungbean with high management practices for maximum yield.

Materials and methods

The experiment was conducted in farmers' field at FSRD site, Lebukhali, Patuakhali during late rabi, 2003. Mungbean variety used was BARI Mung-5. The experiment was laid out in RBC design with five dispersed replications. Seven treatments were used with different management packages were as follows:

- T₁= Full package of recommended management practices (a. Good tillage, 4-5 ploughing and laddering, b. Recommendation fertilizer for NPK, c. Weed control, 1-2 weeding, d. irrigation, 1-2 times and e. pest control.)
- T_2 = Full package without good tillage.
- T₃= Full package without recommended fertilizer.
- T₄= Full package without weed control.
- T_5 = Full package without irrigation.
- T_6 = Full package without pest control.
- T₇= Farmers' practice (2 ploughing, no fertilizer, weed control, irrigation and pest control).

The unit plot size was 8m x 5m. Mungbean seeds (35 kg/ha) were sown on 2 February, 2003 in line sowing (line to line distance 30 cm). 12-8-8 kg/ha NPK was applied during final land preparation. Weed control was done once after 20 days of sowing. Irrigation was done once after 25 days of sowing. First shower of the season began on March 14, 2003. Severe infestation of thrips occurred at the time of first flowering and also pod borer infestation was severe. Cymbush @ 2 ml/liter water was sprayed at the time of first flowering. The treatment without pest control gave zero yield at first time. After harvesting first time inflorescence appeared 2^{nd} time and a good yield obtained.

Result and Discussion

The result of the experiment reveals that full package produces the highest grain yield but there was no statistical difference between good tillage and minimum tillage. Treatment without fertilizer and without weed control produces statistically identical yield. There was statistically difference between irrigation and without irrigation. Pest reduced yield drastically this year. Farmers' practice produced the lowest yield.

As it was the result of one year experiment, it should be continued for the next year.

T ()	Plant height	Plant population	Branch/	Pod/	Seed/	1000seed	Yield
Ireatment	(cm) at harvest	plant	plant	pod	wt. (gm)	(kg/ha)	
T_1	40a	32ab	4.5ab	16.2a	8.6	32.2a	1356a
T_2	38b	33a	4.6a	16.4a	8.2	30.6b	1300a
T_3	39ab	32ab	3.8abc	15.4ab	8.2	30.8b	1190b
T_4	40a	31bc	3.2c	15.5ab	8.2	30.2b	1136b
T_5	40a	31bc	3.6bc	13.8b	7.6	30.2b	964c
T_6	40a	32ab	2.0d	5.2c	8.0	30.2b	388d
T_7	38b	30c	3.3c	4.1d	8.0	30.2b	296e
CV (%)	4.45	3.24	13.90	7.89	12.78	1.61	10.20

Table1. Yield and yield contributing characters of Mungbean under different management practice

ON-FARM ADAPTIVE TRIAL OF DEVELOPED AND ADVANCED LINES OF GROUNDNUT IN SALINE AREA OF NOAKHALI

Abstract

Three years field experiment were conducted in the farmers' field of FSRD site Atkapalia, Noakhali during the Rabi season of 2000-01, 2001-02 and 2002-03 with two developed varieties (BARI Badam-5 and BARI Badam-6) along with an advanced line ICGS89257 and local variety. Three years result showed that BARI Badam-6/5 performed better in respect of nut yield and recommended for cultivation in saline area of Noakhali.

Introduction

Most of the farmers of the 'char' area cultivate local variety of groundnut with traditional management practices resulting very low yield. Oilseed Research Center of BARI already developed some variety and one promising line of groundnut on the basis of their yield performance. This variety/line needs to be tested to evaluate the performance of some varieties of groundnut under farmers' condition.

Materials and Methods

The study was conducted at FSRD site Atkapalia, Noakhali during Rabi season of 2000-01, 2001-02 and 2002-03. The experiment was laid out in RCB design with four replications. The soil was silty loam to clay under the Ramgoti soil series of AEZ 18. Unit plot size was 5 m x 4 m. Fertilizer dose of 10-70-50 kg/ha of NPK, respectively, was applied in the form of Urea, TSP and MP. All fertilizers were applied as basal dose during final land preparation. Seeds were sown in lines maintaining 30 cm x15 cm spacing. A few root rot diseases were observed. Harvesting was done from mid to last of May.

Results and Discussion

Yield and yield attributes were presented the Table 1. Yield and yield attributes differed significantly among the varieties/lines. The highest plant height was found from ICGS89257 in 2001-02 but this line showed similar height with BARI Badam 5 & 6. Branches/plant was identical except local, which showed the lowest height and branches/plant. The highest pods/plant was recorded from the local variety but at par to ICGS89257. In respect of 100 kernel weight, BARI Badam-6 and respective line showed statistically similar and higher performance than local and BARI Badam-5. Higher nut yield was recorded from BARI Badam-5 (2.9 t/ha) which was statistically similar to BARI Badam-6 (2.97 t/ha) and ICGS89257 (2.87 t/ha). On an average, higher nut yield was obtained from BARI Badam-6 followed by BARI Badam-5, which was much higher yield than local variety. It was concluded from the result that BARI Badam-6/5 could be grown for higher yield in saline area of Noakhali.

	Plant Branch/		Pod/	100 kernal	Nu	Average		
Variety/line	height	plant	nlant	weight (g)	2000-01	2001 02	2002 03	nut yield
	(cm)	(no.)	plain	weight (g)	2000-01	2001-02	2002-03	(t/ha)
BARI Badam-5	45.78	8.55	26	49.28	2.87	2.81	2.92	2.87
BARI Badam-6	43.14	8.20	24	53.71	2.93	2.86	2.91	2.90
ICGS89259	41.34	8.15	29	52.70	2.50	2.94	2.87	2.77
Local	41.53	5.93	31	37.05	2.32	2.59	2.58	2.50
LSD (0.05)	3.34	1.54	4.39	1.03	0.60	NS	0.14	-
CV (%)	4.87	12.52	9.89	1.34	11.30	14.59	3.20	-

Table 1. Performance of different groundnut varieties/line in saline area of Noakhali (Average of 3 years results)

SECONDARY YIELD TRIAL OF BARLEY FOR SALINE AREA

Abstract

The trial was conducted with three selected lines viz. BSHL-2, BSHL-4 and BSH-32 along with a variety BARI barley-4 at the farmers' field of FSRD site Atkapalia, Noakhali, Paikgacha, Khulna and Kalapara, Patuakhali during the rabi season of 2001-03 to select and evaluate their yield potentiality and adaptability in saline area. On an average, the highest grain yield (1068 kg/ha) was recorded from BSH-32 at Noakhali whereas BSHL-4 at Khulna in 2001-02 and BBL94/331 in 2002-03 but BSH-2 at Patuakhali in 2002-03 but average of two years BSH-32 performed better.

Introduction

Barley is one of the important cereals of the world. In Bangladesh barley is cultivated as minor cereal. It can be grown in less fertile soil with minimum inputs. Barley is grown as food for poor people. In foreign country barley is used in a beverage industry for processing alcohol and wine. It is known that barley is a salt tolerant crop. In coastal area, vast land remains fallow due to salinity in rabi and early kharif season. Barley may be cultivated in saline area. BARI has recently developed some high yielding barley variety/lines. The performance of these variety/lines needs to be evaluated in saline area at farmers' field. Keeping this in mind the trial was undertaken.

Materials and Methods

The experiment was conducted under rainfed condition at the farmers' field of FSRD site, Atkapalia, Noakhali, MLT site Paikgacha, Khulna and Kalapara, Patuakhali during the rabi season of 2001-03. Three lines of barley viz. BSHL-2, BSHL-4 and BSH-32 were compared with a variety BARI barley-4 in 2001-02 but the more lines (BBL94/331, BSH-1 and BB-4) were included at Khulna in 2002-03. The former three lines were hull less. The experiment was laid out in a RCB design with three replications. The plot size was 18 m² Fertilizer @ 100-60-40 kg of NPK/ha was applied as basal during the final land preparation. The seeds were sown in line with 30 cm spacing with seed rate 100 kg/ha on 6 December, 2001 and 2002 at Noakhali, 24 December in 2001 & 23 November 2002 at Khulna and 10 December at Patuakhali. Sevin dust was applied with molasses to control cut worm at the seedling stage. Hinosan (0.02%) was sprayed twice 10 days intervals at pre-flowering stage during the just appearance of blight. Weeding was done twice. The crops were harvested 1st week of March in both the years at Noakhali, 1st week of April in 2001-02 & 3rd week of March in 2002-03 at Khulna and 4 April at Patuakhali. In 2001-02. Initial salinity of field was 0.58 ds/m and during the study period the salinity was up to 4.36 ds/m. But salinity level increased up to 5.0 ds/m in 2002-03. The data on yield attributes were statistically analyzed by MSTAT and the means were separated by LSD. The soil salinity level at Khulna site during 24 Dec., 10 and 25 January, 10 & 20 Feb. 1, 10 & 25 March and 5 April were 2.03, 7.71, 6.45, 15.93, 15.80, 8.07, 11.21, 8.10 and 5.20 mm hos/cm, respectively, in 2001-02 but varied in 2002-03 in 23 November, 7 & 22 December, 7 & 22 January, 8 & 24 February, 8 & 18 March 2003 were 1.81, 2.03, 1.94, 3.31, 4.45, 5.68, 5.13, 5.9 & 6.14, mm hos/cm, respectively, whereas soil salinity at Patuakhali site during Dec. 1, Dec. 15, Dec. 30, Jan. 15, Jan. 30, Feb. 15, March 3, March 16 and March 30 were 3.95, 4.21, 5.60, 7.50, 8.75, 11.05, 12.91, 13.88 and 15.27, respectively.

Results and Discussion

Site: Noakhali

Yield and yield attributes of Barley lines along with a variety are presented in Table 1. Plant height and number of effective tillers per plant did not differ significantly. Germination percentage was higher is BSHL-32 but statistically identical to all the varieties/lines. The length of spike of different line was statistically at par but BSHL-2 showed the lowest spike length. The line BB-4 showed higher no. of grains/spike but statistically identical to all variety/line except BSHL-4. The highest grain yield was obtained from line BSHL-4 but statistically identical. On an average, the highest grain yield (1068 kg/ha) was obtained from BSH-32. The yield level in 2001-02 was much higher than this year which might be due to low soil salinity level. Straw yield showed similar behaved as in grain yield. Ayers and Westcost (1976) reported that most arable crop can withstand salinity not exceeding 4.5 ds/m without significant reduction in yield. Soil salinity is the most dominant factor, which limits crop productivity particularly in the rabi and kharif-I seasons (Karim *et. al.*, 1990).

Site: Khulna

Plant height, spike/m², length of spike, grains/spike, 1000-grain weight and grain yield was significantly influenced by different line/variety (Table 2). The line BL-1 showed the highest spike/m² which was statistically identical to BB-4. Length of spike gave higher from line BBL94/331 but at par to all line except BL-1. The highest grains/spike revealed from line BBL94/331 but statically identical to BSHL-4. Significantly the highest grain weight was recorded BBL94/331. Significantly the highest grain yield was recorded from line BBL94/331 due to higher grain weight.

Site: Kalapara, Patuakhali

Statistical analysis was not done at the site. But germination (%) was the highest from BSH-2. The line BSH-2 showed the highest plant height, length of spike and grains/spike. The effective tiller was almost similar in BSH-32 and BSH-2. The line BSH-2 showed the highest grain yield in 2002-03 but this line was not included in 2001-02. On an average, the highest yield was recorded from line BSH-32.

From the study it was observed that BSH-32 line performed better in the saline area of Noakhali but line BBL94/331 at Khulna and BSH-2 at Patuakhali. The experiment should be repeated another year for confirmation at Khulna and Patuakhali because variety/line changed in 2002-03.

References

- Ayers, R. S. and D. W. Westcot. 1976. Water quality for agriculture, Irrigation and Drainage Paper 29, F. A. O. Rome.
- Karim, Z., Hussain, S. G., and M. Ahmed. 1990. Salinity problems and crop intensification in the coastal regions of Bangladesh. BARC Soil publication no. 33: page 63.

Lines/	Germination	Plant height	Effective tillers/	Spike length	Grains / snike	Grain yield (kg/ha)		Straw vield
Variety	(%)	(cm)	plant (no.)	(cm)	(no.)	2001-02	2002-03	(kg/ha)
BSHL-2	80	59.80a	3.07b	5.47	30	1056	803	926
BSHL-4	82	52.73b	4.40a	7.00	26	1028	860	920
BSH-32	83	50.53b	3.93ab	6.60	31	1333	803	933
BB-4	78	49.80b	2.93b	5.93	34	1167	750	850
LSD(0.05)	NS	6.37	0.27	NS	7.0	148.1	NS	NS
CV (%)	3.21	5.99	14.38	14.63	12.26	6.47	9.96	9.12

Table 1. Yield and yield attributes of Barley at the FSRD site, Atkapalia, Noakhali during rabi 2002-03

Figure in column having similar letter(s) do not differ significantly

Line/	Days to	Plant	Snike/m	Grains	1000 grain	Grain yield (kg/ha)	
Variety	maturity	height (cm.)	height (cm.) (2 (no.)) (2 (no.)) (2 (no.)) (2 (no.))		weight (g.)	2001-02	2002-03
BSHL-2	-	-	-	-	-	954b	-
BSHL-4	106	71.13bc	192c	25ab	24.00c	1007a	1180c
BSH-32	106	78.71ab	221b	23b	20.33d	912d	1040cd
BB-4	105	69.56c	247a	18cd	18.00c	924c	950d
BBL94/331	108	80.00a	222b	29a	34.00a	-	2200a
BL-1	105	68.13c	257a	22bc	28.00b	-	1350b
BB-1	106	80.90a	195c	18cd	18.00c	-	950d
CV (%)	-	5.84	4.44	10.64	4.96	10.0	6.68

Table 2. Yield and yield attributes of barley as affected by different lines/variety at Paikgacha MLT site during 2002-03

Table 3. Yield and yield attributes of Barley as influenced by different line/variety at Kalapara, Patuakhali during 2002-03

	Germin	Plant	Length of	Grains/	Effective	Grain yie	Grain yield (kg/ha)	
Line/ Variety	ation	ation height spike sp		spike	tiller/hill	2001-02	2002-03	
	(%)	(cm.)	(cm)	(no.)	tiner/iiii	2001-02	2002-03	
BSH-32	80	66.43	5.8	39	4.6	1720	1721	
BSHL-2	78	55.83	4.8	33	3.9	1497	578	
BSHL-4	78	54.90	5.2	38	4.4	677	914	
BB-4	77	70.27	7.2	49	4.2	837	1010	
BSH-2	88	72.13	6.4	44	4.6	-	2023	
BBL-94/331	70	62.40	5.0	32	4.0	-	447	

ADAPTABILITY TRIAL OF WHEAT IN SALINE AREA UNDER LATE SOWN CONDITION

Abstract

On-farm performance of five wheat varieties namely Kanchan, Sourav, Gourab, Protiva and Shatabdi were evaluated at Paikgacha MLT site, Khulna. On an average, Sourav produced higher grain yield followed by Kanchan. Protiva produced the lowest grain yield. The variety Sourav could be grown in Fallow-Fallow or Fallow-T.Aman-Fallow cropping pattern in saline area.

Introduction

Wheat (*Triticum aestivum*) is the second important cereal crop in Bangladesh. Its cultivation has dramatically been increased during the last few years. Most of the lands in saline area remain fallow in winter season due to salinity. Recently study showed that wheat can survive and performed better up to medium level of salinity. Recently BARI has developed few high yielding varieties more tolerant to leaf rust disease. After late harvesting of T.Aman the land remain fallow due to salinity. So, an experiment was undertaken to test the performance of newly released wheat varieties in saline area under late sown condition.

Materials and Methods

The trial was initiated at Paikgacha MLT site during Rabi season, 2001-02 and 2002-03 with five wheat varieties namely Sourav, Gourab, Kanchan, Protiva and Shatabdi flowing RCB design with four replications in farmers' field. The unit plot size was 3 m x 2 m. The crop was sown on 24 December, 2001 and last week of November 2002 in line sowing. Line to line spacing was 20 cm. Fertilizer were applied at the rate of 100-60-30 kg/ha of N-P₂O₅-k₂O, respectively. All TSP, MP and urea were applied as basal. All the intercultural operations were done as and when necessary. The crop was harvested during the last week of March, 2002 and 3rd week of March 2003. Data on yield and yield attributes were collected and analyzed statistically. The soil salinity level during the crop growing periods measured. The salinity level at the site during 24 Dec., 10 & 25 May, 1 & 30 Feb., 1, 10, 25 March & 5 April were 2.03, 7.71, 6.45, 15.93, 15.80, 8.02, 11.21, 8.10 & 5.20 mm hos/cm, respectively but during 2002-03, were 1.81, 2.03, 1.34, 3.31, 4.45, 5.68, 5.13, 5.9 and 6.14 mm hos/cm, respectively in 23 Nov., 7 & 22 Dec., 7 & 22 Jan., 8 & 24 Feb., 8 & 18 March, respectively.

Results and Discussion

Only length of spike and grain yields was significantly affected by different varieties. Gourav showed the highest plant height but insignificant. Spike/m² was statistically identical but higher from Kanchan. The variety Kanchan revealed higher grain/spike than other variety. Similar behave in 1000-grain weight. All the variety performed better yield but higher yield was obtained from Kanchan followed by Sourav. On an average of two years result showed that Sourav better performance in respect of yield in saline area of Khulna but it needs further trial for confirmation.

Table 1. Yield and Yield attributes of wheat as affected by different varieties at Paikgacha MLT site during 2002-03

Variety	Days to	Plant height	Spike/	Grain/ spike	1000 grain	Grain yie	eld (t/ha)
variety	maturity	(cm)	m ² (no.)	(no.)	weight (g)	2001-02	2002-03
Shatabdi	107	89	10.67a	36	35.30	0.95bc	2.30ab
Sourav	105	88	9.50b	31	36.16	1.23a	2.34a
Gourab	105	92	10.53a	35	36.20	0.95bc	2.11ab
Protiva	103	87	8.90b	33	35.30	0.89a	1.98b
Kanchan	103	90	10.73a	39	37.20	1.10ab	2.42a
CV (%)	_	4.20	3.26	10.12	3.07	10.42	7.43

Means followed by common letters are statistically similar at 5% level.

ON-FARM EVALUATION TRIAL OF SWEET POTATO VARIETIES

Abstract

On farm evaluation trial of different Sweet potato varieties was carried out at FSRD site, Atkapalia, Noakhali during the Rabi season of 2001-03. The result revealed that BARI SP-4 gave the highest yield (23 t/ha) followed by Tripti (20.81 t/ha) and BARI SP-4(20.01 t/ha). The lowest yield was found from local variety (14.50 t/ha). The highest BCR (2.93) was found from BARI SP-4 and the lowest in BARI SP-5.

Introduction

Sweet potato grows well in char area of Noakhali district but yield is very low due to cultivation of local variety. Recently BARI has developed some new varieties of sweet potato. So, an experiment was undertaken to identify suitable variety for char area of Noakhali.

Materials and Methods

The experiment was conducted at FSRD site, Atkapalia, Noakhali during 2001-03. There were six varieties Tripti, Daulatpuri, Kamalasunduri, BARI sweet potato-4, BARI sweet potato-5 and Local in the study. The experiment was laid out RCBD with 3 dispersed replication. The unit plot size was 8m x 5m. Row to row and plant to plant spacing was 60 cm x 30 cm. Fertilizer dose 114-92-58 NPK kg/ha were used as basal dose. The crop was sown on 14 December 2001 and 1st January 2003 and harvested 11-12 May 2002 and 4-10 May 2003. Data were statistically analyzed.

Results and Discussion

Yield and yield performance as well as cost benefit analysis are presented in Table 1. Higher number of root/plant was found from BARI SP-5 which was statistically similar to Daulatpuri & Tripti. The root weight per plant was found high in BARI SP-4 but at par with Tripti. On an average, maximum yield was found from BARI SP-4 followed by Tripti. The lowest yield was found from local variety in both the years.

The highest gross margin and benefit cost ratio was obtained from BARI SP-4. BARI SP -4 could be grown in saline area of Noakhali for its high yield.

Farmers' reaction

BARI developed varieties of sweet potatoes are new in the FSRD site, Atkapalia, Noakhali and its market price lower than local variety. Farmers' attitude about Kamalasunduri is well for attractive colour, sweetness and softness. But local variety can be stored for longer time than the BARI developed variety. Though, the local variety gave the lowest yield but acceptance more due to higher price and keeping quality.

Variaty	Root/	Root wt.	Yield	(t/ha)	Gross	TVC	BC	CR
variety	plant	/plant (g)	2001-02	2002-03	return	IVC	2001-02	2002-03
Tripti	4.6b	672ab	17.96a	23.67	62440	23500	2.29	3.02
Daulatpuri	4.97ab	551c	12.43b	21.67	51145	23500	1.59	2.76
Kamalasundari	-	-	17.22a	-	51660	23500	2.19	-
BARI SP- 4	4.4bc	735a	20.01a	26.00	69015	23500	2.55	3.31
BARI SP-5	5.5a	596bc	12.59b	20.33	49380	23500	1.61	2.59
Local	3.67c	557c	10.34b	18.67	48685	23500	1.80	2.44
LSD	0.861	82.83	4.509	NS				
CV (%)	9.19	7.07	16.42	18.61				

Table 1. Yield, yield attributes and cost benefit (average) analysis of different sweet potato varieties at Atkapalia, Noakhali during 2002-03

ON-FARM TRIAL OF TOMATO VARIETIES

Abstract

Performance of four tomato varieties namely BARI tomato-6, BARI tomato-7, BARI tomato-8 and BARI tomato-11 were evaluated in saline belt of FSRD site, Atkapalia, Noakhali during 2001-02 and 2002-03. The variety, BARI tomato-7 gave the highest yield (65.14 t/ha) followed BARI Tomato-8 (62.67 t/ha). The highest gross margin (Tk. 260580/ha) and benefit cost ratio (5.30) was recorded in BARI tomato-7 due to it's the higher yield performance.

Introduction

Tomato is not common and popular vegetables in Bangladesh. It is rich in Vitamin. The average yield of local variety is very low compared to release varieties of BARI. The low yield in Noakhali district is due to use of local variety and salinity effect. Therefore, the experiment was taken in order to determine the adaptability and yield performance of newly developed tomato varieties in the farmers' field.

Materials and Methods

Four developed varieties of tomato by BARI viz., BARI tomato-6, BARI tomato-7, BARI tomato-8 and BARI tomato-11 were evaluated at FSRD site, Atkapalia, Noakhali during the Rabi season of 2001-02 and 2002-03. The experiment was laid out in RCB design with six dispersed replications. The unit plot size was 40 m².Seedlings were transplanted from 25 November to 24 December, 2001 & 1st week of November to last week of December 2002 with 60 cm x 40 cm spacing recommended dose of fertilizers were applied as basal during the final land preparation. The plots were weeded in two times. Harvesting was done from 4 March to 9 April, 2002 and Mid February to Mid April 2003 depending upon the maturity condition of fruits. Data on yield and yield contributing characters were recorded and analyzed. Moreover, input and output prices were recorded for cost and return analysis.

Results and Discussion

Response of tomato varieties about yield and yield contributing character is presented in Table 1. The varieties differed signilficantly fruit weight and yield. Significantly the highest individual fruit weight was recorded in BARI tomato-7 and the lowest from BARI Tomato-12. BARI Tomato-7 gave high yield which was statistically similar with BARI Tomato-8 and BARI Tomato-2. The highest yield was due to their individual fruit weight. The lowest yield was recorded in BARI Tomato-6. The variety BARI Tomato-1 gave the highest gross margin followed by BARI Tomato-2 and BARI Tomato-8. But higher benefit cost ratio was recorded from BARI Tomato-7 followed by BARI Tomato-8.

Conclusion

The production of tomato during rabi season, 2001-02 at Atkapalia, Noakhali was found satisfactory but decline during 2002-03.

Farmers' reaction

Farmers were very much pleased due to high yield performance. BARI tomato-8 was more popular for its long durability. Farmers already preserved the seeds of the BARI tomato -8 for next year cultivation.

Treatment	Fruits/ plant	Each fruit	Yie (t/r	Yield (t/ha)		GR	BCR	
	(no.)	weight (g)	2001-02	2002-03	(TK./na)	(тк./па)	2001-02	2002-03
BARI Tomato-2	25	83.17c	63.31b	-	60400	253240	-	4.19
BARI Tomato-6	23	88.90bc	61.37b	46.06a	49400	214860	4.79	4.06
BARI Tomato-7	23	112.2a	76.62a	53.61a	49400	260580	5.59	5.02
BARI Tomato-8	25	101.8bc	76.01ab	69.33a	49400	250680	5.13	5.03
BARI Tomato-11	-	-	-	20.37a	38400	61110	1.59	-
LSD (0.05)	NS	12.95	-	8.23				
CV (%)	6.89	6.73	-	15.82				

Table 1. Yield, yield attributes and cost benefit analysis (average) of Tomato at FSRD site, Atkapalia, Noakhali during 2002-03

Figures in column having similar letter do not differ significantly.

SCREENING OF DIFFERENT RABI CROPS IN SALINE AREA

Abstract

An attempt was made to identify suitable crops for saline area of MLT site Kalapara, Patuakhali during the season of 2001-02. Salinity level in the area ranges between 6-14 ds/m during the dry period. Chilli, Mungbean, sesame, linseed, cowpea, sunflower and safflower were grown as test crop. Among those crops, Chilli, sunflower, sesame and cowpea were found feasible and profitable in both irrigated and rainfed condition.

Introduction

At present total saline area of the country is estimated to be about 0.88 million ha of which more than 0.22 million ha is in Patuakhali region. These lands are affected by salinity of varying degrees from 5-26 ds/m during dry period. Present land use in the coastal area is primarily limited within growing of T.Aman rice crop in the wet season. During dry period (Nov.-March) a vast area of land remains fallow due to salinity and farmers' are not known about crops/variety to be grown in the site. In this context an experiment was undertaken to find out the suitable crops in the saline area.

Materials and Methods

The experiment was conducted at MLT site Kalapara, Patuakhali during rabi 2001-02. The experiment was laid out in randomized complete block design with 4 replications. The unit plot size was 6m x 5m. Seven crops were selected viz., Mungbean, cowpea, sunflower, safflower, linseed, sesame and Chilli. Crops were cultivated in rainfed and irrigated condition. The salinity level of water at the site during 2002-03 in January, February and March were 0.53, 0.59 and 0.64 ds/m and soil moisture (0-15 cm depth) in January, February, March and April were 21.4, 14.4, 12.63 and 18.0 ds/m, respectively.

Crops	Variety	Spacing (cm)	NPK (kg/ha)	Sowing time	Harvesting time
Chilli	Local	50 x 30	50-30-50	Dec. 14, 2002	May15, 2003
Mungbean	Kanti	30 x 5	8-6-8	Jan. 5, 2003	April 20, 2003
Sunflower	Kironi	50 x 25	92-40-60	Dec. 15, 2002	April 15, 2003
Sesame	T-6	30 x 5	45-20-24	Dec. 20, 2002	May 15, 2003
Cowpea	BARI Felon	40 x 15	8-14-18	Dec. 20, 2002	April 20, 2003
Linseed	Nila	30 x 10	45-20-24	Dec. 15, 2002	April 17, 2003

Spacing, fertilizer, sowing and harvesting time of different crops shown below, 2002-03:

Results and Discussion

Seven crops were evaluated in the saline area of Kalapara, Patuakhali of which Chilli performed better with higher benefit cost ratio in both irrigated and rainfed condition. Although Chilli involved higher cost of cultivation but due to its market price higher gross return was achieved. Among two pulses crops, cowpea was found better than Mungbean in respect of yield and benefit. Four oilseed crops were put under trial of which sunflower showed higher yield and monetary benefit than other three crops in both situation. From above result it showed that Chilli, cowpea and sunflower could be grown in saline area of Patuakhali region.

Table 1. Salinity level (ds/m) at different depth of soil at Kalapara, Patuakhali during rabi 2002-03

Month	Top soil	10 cm	20 cm	30 cm
December	8.17	7.40	7.0	6.9
January	7.90	7.60	6.89	7.41
February	10.00	10.00	8.90	8.30
March	15.50	12.00	10.63	10.52
April	13.00	10.56	10.46	10.30

Crops		Yield (kg/ha)	BCR		
1	2001-02	2002-03	Mean	2001-02	2002-03
Chilli	740	740	740	2.12	2.74
Cowpea	1292	1300	1296	1.48	1.38
Mungbean	490	416	453	1.40	1.19
Sesame	1090	853	971.5	1.42	1.11
Sunflower	1267	1260	1263.5	1.64	1.63
Linseed	800	760	780	1.43	1.26
Safflower	1167	-	1167	1.52	-

Table 2. Yield and BCR of Mungbean, Chilli, Cowpea and Sesame in irrigated condition at Kalapara during Rabi 2001-02 & 2002-03

Table 3. Yield and BCR of Mungbean, Chilli, Cowpea and Sesame in rainfed condition at Kalapara during Rabi 2001-02 & 2002-03

Crops		Yield (kg/ha)	BCR		
-	2001-02	2002-03	Mean	2001-02	2002-03
Chilli	1096	616	856	1.36	2.27
Cowpea	578	1110	844	1.65	1.28
Mungbean	420	398	409	1.20	1.30
Sesame	986	756	871	1.28	1.10
Sunflower	1007	1053	1030	1.30	1.53
Linseed	700	662	681	1.16	1.26
Safflower	900	-	900	1.17	-

Crops (Tk./kg): Mungbean=23, Linseed= 12, Cowpea=13, Chilli=35, Sesame= 2, Sunflower=12, Safflower=12

CROP SCREENING AFTER T.AMAN RICE HARVEST

Abstract

An experiment was deigned to identify crops in the Patuakhali area after T.Aman harvest during rabi season of 2002-03 at FSRD site Lebukhali, Patuakhali. The experiment was firstly initiated in all three phases of Medium highland. In lower phase only local varieties of T.Aman rice is grown which harvest late usually in last of December to mid January. Any rabi crops grown in the lower phase was not found more profitable in compare to Mungbean. In the ridge almost all rabi crops of the experiment could be grown successfully and profitably. So in this current year the experiment was conducted only in the medium phase of medium high land. The experiment was conducted with 7 crops on medium high land (Ridge) modern and Local varieties of rice where harvested with in 30 November. All the crops grown were found promising of which onion showed the highest benefit cost ratio (5.56). On an average, Brinjal showed the highest BCR (7.10) during 2002-03 but Brinjal was not included in 2001-02.

Introduction

The entire district of Patuakhali and Barguna is within the Ganges Tidal Floodplain (AEZ-13). Most of the lands of this zone get tidally flooded from end of March to end of November. More than 60% of all the cultivable land of this area remains fallow during winter. Only a limited number of crops like khesari, Cowpea, Mungbean, Chilli, Sweet Potato, G. Nut etc. are grown in about one third of the crop land due to late harvest of T.Aman rice. Though major part of the area is of medium highland type there are variations in the flooding depth of the cropland varies from 15cm to 80cm. Depending upon flooding depth medium highland are divided into 3 phases namely ridge (6-30 cm) medium phase (30-60 cm) and lower phase(70 cm above). Modern and local varieties of rice are grown depending upon flooding depth. So, an experiment was designed to identify crops those could be grown profitability in medium high land ridge (flooding depth 15 to 30 cm).

Materials and Methods

The experiment was conducted in medium highland at Farming Systems Research and Development (FSRD) site Lebukhali, Patuakhali during the year rabi 2001-02 and 2002-03 to find out the profitable crop production after T.Aman rice harvest in rainfed condition. The study was made as in RCB design with 5 replications. Each unit plot measured 6 m x 5 m. T.Aman rice was harvested on 30 November. Five crops viz. Chilli, Mungbean, Onion, Sesame, Chickpea were grown in 2001-02 but during 2002-03 more few crops like Brinjal, Tomato, Potato and Sweet potato were included.

Results and Discussion

Yield of Chilli, Mungbean, onion, sesame and chickpea were similar in both the years but higher BCR was recorded from onion. During 2002-03 few more crops were included. Among which brinjal showed the highest yield and BCR (7.10) followed by onion. Mungbean also showed reasonable yield and BCR. The experiment needs further trial because new crops were included in 2002-03.

Variety	Variety	Spacing (cm)	Fertilizer NPK (kg/ha)	Sowing time	Harvesting time
Chilli	Local	50 x 30	50-30-50	December, 2002	May 20, 2003
Mungbean	BARI Mung-5	30 x 5	8-6-8	January 27, 2003	April 26, 2003
Onion	Taherpuri	30 x 15	121-40-70	December 29, 2002	April 19, 2003
Chickpea	Local	30 x 10	15-14-15	December 12, 2002	April 13, 2003
Brinjal	Kazla	60 x 40	150-30-125	December 14, 2002	March 29, 2003
Sweet Potato	Tripti	40 x 30	50-25-50	December 24, 2002	April 24, 2003
Potato	Diamont	40 x 30	135-40-135	December 15, 2002	March 4, 2003
Tomato	BARI Tomato-6	60 x 40	250-90-125	December 12, 2002	April 10, 2003
Pointed gourd	-	40 x 30	150-30-125	December 26, 2002	damaged

Table 1. Management practice of different crops grown for the experiment, 2002-03

Table 2. Yield and BCR of different crops after T.Aman harvest in Patuakhali region

Crons	Yield	(kg/ha)	BC	CR
Crops	2001-02	2002-03	2001-02	2002-03
Chilli	960	960	2.03	2.03
Mungbean	1000	1230	2.36	2.07
Onion	8546	8360	5.52	5.60
Sesame	1200	1200	1.40	1.56
Chickpea	926	950	1.63	2.26
Brinjal	-	49500	-	7.10
Sweet Potato	-	37750	-	4.30
Potato	-	20100	-	3.55
Tomato	-	50700	-	3.91
Pointed gourd	damaged		-	-

Crops	Price (Tk./kg)
Mungbean	= 25.00
Onion	= 12.00
Chickpea	= 25.00
Chilli	= 35.00
Sesame	= 12.00

SCREENING OF DIFFERENT OIL CROPS IN SALINE AREA DURING RABI SEASON

Abstract

The experiment was conducted at Banerpota farm, Satkhira to screen the different salt tolerant varieties of different oilseed crops. The result showed that soybean variety Shohag, Linseed line McGregor, Niger variety Shova and Safflower variety Saf-1 and Groundnut variety Jhinga badam performed better at Banerpota farm. Sesame did not perform well.

Introduction

In Bangladesh, more than 30% of the cultivable area is in the coast. Coastal areas are seriously affected by various degrees of salinity. After harvesting of T.Aman vast land remain fallow. During rabi season, the soil salinity levels increase through capillary movement. For higher salinity most of the rabi crops do not survive in the area. BARI recently developed many high yielding varieties of oilseed crops. The performance of the varieties of oilseeds needs to be evaluated in saline area. The present study was therefore, undertaken to find out the suitable varieties of oilseeds in saline area.

Materials and Methods

The trial was conducted at Banerpota farm, Satkhira during rabi season 2002-2003. Five different crops were sown on 28 November, 2002 at Banerpota farm. Four varieties of Soybean (Galisom, Shohag, Bangladesh soybean-4 and BARI soybean-5), four varieties of Linseed (Lin-1, Dufferin, McGragor and JL-3), four varieties of Niger (Shova, Nawalpur, Acc-108 and Acc-104), three varieties of Sesame (BARI Til-2, BARI Til-3 and T-6) and one variety of Safflower (Saf-1) and four varieties of Groundnut (Dhaka-1, BARI badam-5, BARI badam-6 and Jhinga badam) were included in the study. The unit plot size was 2 m x 1 m. Seeds were sown in a RCB design with three replications. The seeds were sown as line sowing. Two irrigations were given. The detail particulars of materials and methods are presented in Table-1. Intercultural operations were followed as and when necessary. The soil salinity level at the site during 27 Nov'02, 12 Dec'02, 27 Dec.'02, 13 Jan'03, 28 Jan'03, 11 Feb'03, 26 Feb'03, 10 Mar'03, 25 Mar'03, 10 Apr'03, 26 Apr'03 and 10 May'03 were 1.74, 1.84, 1.99, 2.1, 2.4, 1.84, 2.65, 2.98, 3.04, 3.61, 3.54 and 3.60 mm hos/cm, respectively. Sesame crop damaged in late January.

Name of crops	Mathed of coving	of couving Spacing		Fertilizer d	lose (kg/ha)	(kg/ha)	
	Method of sowing	Spacing	N	Р	K	S	
Soybean	Line	30 cm	25	35	55	18	
Linseed	Line	30 cm	35	25	23	-	
Niger	Line	30 cm	35	25	25	-	
Sesame	Line	30 cm	50	28	23	20	
Safflower	Line	40 cm	45	20	25	-	
Groundnut	Line	30 cm	12	32	43	54	

Table 1. Methods of sowing, spacing and fertilizer dose for different crops

Soybean

Results and Discussion

Performance of different oil crop varieties has been presented in table-2. Plant height, pod/plant, 1000-seed weight and seed yield of soybean differed significantly by varieties/line. Shohag produced the highest seed yield could be due to seed weight. Bangladesh soybean-4 produced the lowest yield followed BARI Soybean 5. The higher yield from Shohag could be due to the lowest seed weight.

Linseed

Plant population/m², plant height, capsule/plant, 1000-seed weight and seed yield of linseed differed significantly by variety/line. The highest seed yield produced by McGragor followed by Lin-1. The former variety gave higher yield could be due to maximum capsule/plant and seed weight.

Niger

Plant height, head/plant, 1000-seed weight and seed yield of niger differed significantly by varieties/line. Significantly the highest seed yield was produced from variety. Shova could be due to the highest head/plant and seed/head. Acc-108 produced the lowest yield could be due to minimum head/plant and seed weight.

Safflower

A Safflower variety Saf-1 was introduced which yielded 1840 kg/ha.

Groundnut

Pod/plant, seed/pod, 100 kernel weight and pod yield of groundnut differed significantly by varieties. Jhinga badam produced the highest pod yield followed by BARI Badam-6. The farmers variety gave higher yield could be due to maximum number of seed/pod. Dhaka-1 produced the lowest yield could be due to lower seed/pod and seed weight.

Conclusion

It was observed that soybean variety Shohag, linseed line McGragor, niger variety Shova, safflower variety Saf-1 and groundnut variety Jhinga badam showed better adaptability. Further investigation in relation to management practices could be done to evaluate the performance of above mentioned crops.

Table 2. Yield and yield attributes of different oil crops tested at Banerpota farm during Rabi, 2002-03

a) Soybean

Variety/line	Days to maturity	Plant pop./m ²	Plant height (cm)	Pod/ plant	Seed/ pod	100- seed wt. (g)	Seed yield (kg/ha)
Galisom	126	35.50	56.00b	46.50a	2.25	6.32b	1560c
Shohag	128	34.00	56.25b	38.75b	1.92	10.90a	1595a
Bangladesh soybean-4	130	34.75	61.75a	41.75b	2.20	5.67c	1471b
BARI soybean-5	128	33.75	60.50ab	39.25b	2.17	10.50a	1537ab
Level of significance	-	NS	*	*	NS	*	*
CV (%)	-	7.00	5.13	6.97	8.51	3.95	2.95

b) Linseed

Variaty/lina	Days to	Plant	Plant height	Capsule/	Seed/	1000-seed	Seed yield
variety/infe	maturity	pop./m ²	(cm)	plant	Capsule	wt. (g)	(kg/ha)
Lin-1	125	116 b	68.33c	47.00c	9.00	3.97a	1483a
Dufferin	131	135 a	96.00a	62.67a	7.00	3.53b	980c
McGragor	133	116 b	41.00d	71.67a	7.33	3.60b	1511a
JL-3	131	149 a	88.66b	64.33ab	7.33	3.47b	1268b
LSD		*	*	*	NS	*	*
CV (%)		6.43	4.67	6.30	13.22	4.46	2.89

c) Niger

Variatu/lina	Days to	Plant	Plant height	Used/plant	Saad/baad	1000-seed	Seed yield
variety/line	maturity	pop./m ²	(cm)	nead/plant	Seed/nead	wt. (g)	(kg/ha)
Shova	113	34.25	107.75a	47.00a	33.00	3.42a	1232a
Nawalpur	110	34.25	92.25b	36.75b	28.00	3.55a	1125b
Acc-104	113	32.50	104.25a	37.00b	31.75	3.37a	1140b
Acc-108	113	35.25	104.50a	36.25b	32.00	3.10b	1045c
LS	-	NS	*	*	NS	*	*
CV (%)	-	5.18	4.43	7.11	9.35	5.03	3.24

d) Safflower

Variety	Days to maturity	Plant pop./m ²	Plant height (cm)	Head/plant	Seed/ head	1000-seed wt. (g)	Seed yield (kg/ha)
Saf-1	133	32	70	82	28	27.70	1840

e) Groundnut

Variety	Days to maturity	Plant height (cm)	Pod/plant	Seed/ Pod	100-kernel wt. (g)	Pod yield (kg/ha)
Dhaka-1	155	40.00	23.80a	1.77b	26.00c	1603c
BARI badam-5	155	40.33	10.10c	1.87b	44.60b	1739bc
BARI badam-6	155	37.00	15.30b	2.03b	54.83a	1958ab
Jhinga badam	160	40.66	11.10bc	3.07a	40.50b	2106a
CV (%)		12.18	15.96	12.19	10.09	7.32

Means followed by common letters are statistically similar at 5% level.

SCREENING OF DIFFERENT RABI CROPS IN SALINE AREA

Abstract

Different rabi crops specially vegetables and pulses were screened in saline area of Khulna under AEZ-13 during 2002-2003. Salinity level in the area ranges between 1.81 –6.14 mm hos/cm during the crop growing season. Tomato, Chilli, radish, chickpea and lentil were grown as test crop. Among those crops tomato and Chilli were found feasible and profitable.

Introduction

Out of 2.83 million hectares in the districts of Bangladesh, about 0.84 million hectares are affected by varying degrees of salinity from the SRDI soil test report. Salinity level is low from May to November but salinity level is the highest during rabi season. As a result, it is very difficult to grow rabi crops in that area. From previous results of studies in saline area, It was observed that some crops can be grown. So, it is needed to screen the crops that can withstand certain levels of salinity.

Materials and Methods

The experiment was conducted in farmers' field at Paikgacha MLT site during rabi season, 2002-03. The experiment was laid out in randomized complete block design with four replications. The unit plot size was 2 m x 2 m. Five crops were included in the study viz. Tomato, Chilli, radish, chickpea and lentil. The seed/seedlings were sown as line sowing. Irrigation was given during early growth stage of vegetables. The detail particulars of materials and methods are presented in Table 1. Intercultural operations were done as and when necessary. Data on yield of different crops were collected and cost benefit was done. The soil salinity level during 23 November'02, 07 and 22 December'02, 07 and 22 January'03, 08 and 24 February'03, 08, 18 March'03 and 02 April'03 were 1.81, 2.03, 1.94, 3.31, 4.45, 5.68, 5.13, 5.9, 6.14 and 6.07 mm hos/ cm, respectively.

Crops	Variety	Spacing (cm)	N-P-K (kg/ha)	Harvesting time
Tomato	BARI-9	60×40	200-80-100	Feb. 20 to Mar. 10
Chilli	Local	50×30	70-30-50	Mar.15 to April 15
Radish	Druti	30×20	130-50-105	First week of Feb.'03
Chickpea	BARI-5	40	20-16-15	Damaged during Jan.'03
Lentil	BARI-4	30	20-16-15	Damaged during Jan.'03

Table 1. Variety, spacing, fertilizer and harvesting time of different crops

Results and Discussion

The yield performance of different crops and cost benefit are presented in Table-2. Five crops were evaluated in the saline area of Paikgacha of which tomato performed better with higher benefit cost ratio. Although tomato involved higher cost of cultivation but due to its market price higher gross return was achieved. Chickpea and lentil was damaged at January. From the above result it showed that tomato and Chilli could be grown in saline area of Paikgacha area but the experiment needs further investigation for confirmation.

Crop	Yield (kg/ha)	Gross return (Tk./ha)	TVC (Tk./ha)	Gross margin (Tk./ha)	BCR
Tomato	23,900	1,31,450	24,400	1,07,550	5.39
Chilli	4,100	49,200	14,600	34,600	3.37
Radish	17,500	52,500	21,800	30,700	2.40

Table 2. Yield and economic performance of different rabi crops at Paikgacha MLT site during rabi, 2002-03

Price (Tk./kg): Chilli = 12.00, Tomato = 5.50 & Radish = 3.00

Farmer's reaction: Farmer's expressed their satisfaction due to higher yield of BARI Tomato-9.

VERIFICATION OF SELECTED VARIETIES OF WHEAT, MAIZE AND SUNFLOWER AT SALINE AREA

Abstract

The experiment was conducted at Paikgacha MLT site to screen the different salt tolerant varieties of different crops. The result showed that wheat variety Sourav, Maize variety BARI Maize-5, Sunflower variety Kironi performed better at saline area. Further investigation in relation to management practices need to be done.

Introduction

In Bangladesh, more than 30% of the cultivable area is in the coast. Coastal areas are seriously affected by various degrees of salinity. After harvesting of T.Aman vast land remain fallow. During rabi season, the soil salinity levels increase through capillary movement. For higher salinity most of the rabi crops do not survive in the area. BARI recently developed many high yielding varieties of cereal and oilseed crops. The performance of the varieties of cereals and oilseeds need to be evaluated in saline area. The present study was therefore, undertaken to find out the suitable varieties of cereals and oilseeds in saline area.

Materials and Methods

The trial was conducted at Paikgacha MLT site during rabi season 2002-2003. Three different crops were sown on 23 November 2002. Two varieties of wheat (Sourav and Gourab), two varieties of maize (Barnali and BARI Maize-5) and one variety of sunflower (Kironi) were included in the study. The unit plot size was $2 \text{ m} \times 1 \text{ m}$. Seeds were sown following RCB design with four replications. The seeds were sown as line sowing. One irrigation was given. The detail particulars of materials and methods are presented in Table 1. Intercultural operations were followed as and when necessary. The soil salinity level during 23 November'02, 07 and 22 December'02, 07 and 22 January'03, 08 and 24 February'03, 08 and 18 March'03 and 02 April'03 were 1.81, 2.03, 1.94, 3.31, 4.45, 5.68, 5.13, 5.90, 6.14 and 6.07 mm hos/cm, respectively. Data on yield and yield attributes were collected and analyzed statistically

Name of crops	Method of sowing	Spacing	Fertilizer dose (kg/ha)				
		(cm)	Ν	Р	K	S	Zn
Wheat	Line	20	82	28	25	20	-
Maize	Line	75×25	92	30	50	27	4
Sunflower	Line	50×25	92	40	75	30	3.5

Table 1. Methods of sowing, spacing and fertilizer dose for different crops

Results and Discussion

Performance of different crop varieties has been presented in table-2. Plant height and grain yield differed significantly by varieties of wheat. Sourav produced significantly the highest grain yield could be due to higher spike/m², longer spike and more number of grain/spike.

Grains/cob, 1000-grain weight and grain yield differed significantly by varieties of maize. The variety BARI Maize-5 produced significantly higher yield due to more number of grains/cob and grain weight.

Sunflower variety, Kironi was introduced which yielded 1020 kg/ha.
Table-2. Yield and yield attributes of different crops tested at Paikgacha MLTS during rabi season, 2002-03

a)	Wheat
----	-------

Variety	Days to maturity	Plant height (cm)	Spike/m ²	Spike length (cm)	Grain/ Spike	1000 grain wt. (g)	Grain yield (t/ha)
Sourav	108	92.75	209	10.70	37.50	35.35	2.34
Gourab	106	95.50	205	10.30	35.00	36.20	2.13
LSD (0.05)	-	2.38	NS	NS	NS	NS	0.19
CV (%)	-	1.13	1.83	2.86	8.20	1.89	3.78

b) Maize

Variety	Days to Maturity	Plant pop./m ²	Plant height (cm)	Cob/ plant	Grain /cob	100-grain weight (g)	Grain yield (t/ha)
Barnali	120	4.50	182	1.27	319	14.72	2.96
BARI Maize-5	123	4.50	185	1.37	342	16.77	3.21
LSD (0.05)	-	NS	NS	NS	20.92	1.86	0.16
CV (%)	-	-	2.31	-	2.81	5.27	2.23

c) Sun flower

Variety	Days to	Plant height	Head diameter	Seed/head	1000 seed	Seed yield
	maturity	(cm)	(cm)	(No.)	weight (g)	(kg/ha)
Kironi	90	121	13	261	56	1020

Conclusion

It was observed that wheat variety Sourav, maize variety BARI Maize-5 and sunflower variety Kironi showed better adaptability in saline area. These crops can be grown in Fallow-Fallow-Fallow or Fallow-T.Aman-Fallow cropping pattern. The experiment needs to be repeated another year and besides management practice could be done.

Farmers' reaction

Farmers preferred wheat, maize and sunflower for their adaptability in saline area. Farmers preferred dwarf sunflower variety.

OBSERVATION TRIAL OF SESAME AND SUNFLOWER MIXED CROPPING

Abstract

An experiment was conducted at Banerpota Farm, Satkhira during Kharif season to determine the optimum seeding rates of sunflower and sesame as mixed cropping. Five different seeding combinations of sesame and sunflower crops were studied. The highest sesame equivalent yield (1.44 kg/ha) but the highest gross return, gross margin and benefit cost ratio (1.44) were obtained from sole sunflower. Mixed cropping of sesame and sunflower was not found feasible in saline area.

Introduction

Mixed cropping as a method of crop intensification is commonly practiced in densely populated countries to provide more food and some times to cover risk from natural calamities. Farmers are habituated to cultivate sesame as a sole crop. But almost every year excess rainfall damage the crop due to water logged condition. As a result sesame cultivation becomes losing concern to the farmer for that year. To cover the risk of damaged, sunflower with sesame mixed cropping can earn something from sunflower. The present study was therefore, under taken to determine the optimum seeding rates of sunflower that could be grown with sesame without affecting its yield.

Materials and Methods

The experiment was conducted during the period from February to May, 2003 at Banerpota Farm, Satkhira. The treatments were monoculture sesame, sunflower and three seeding combinations (100% sesame + 10% sunflower, 100% sesame + 20% sunflower and 100% sesame + 30% sunflower) were included in the study. The experiment was laid out in a randomized complete block design with three replications. The size of unit plot was $5 \text{ m} \times 4 \text{ m}$. The seeding rates of sesame and sunflower 8 and 12 kg/ha for the sole crop. The local cultivar for sesame and Kironi for sunflower were used. The seeds were sown on 10 February, 2003. Fertilizers were applied at the rate of 50 kg N, 28 kg P, 23kg K, 20 kg S, 1.8 kg Zn and 1.8 kg B/ha through Urea, TSP, MP, Gypsum, ZnSO₄ and Boric acid, respectively. All TSP, MP, Gypsum, ZnSO₄, Boric acid and half of urea was applied at final land preparation. The rest of half urea was applied at 25 DAS. One irrigation was given. All intercultural operations were done as and when necessary. Harvesting of sesame was done on 15 May 2003 and sunflower on 18 May 2003. Data on different yield parameters were recorded and analyzed statistically. Economically analysis was done.

Results and Discussion

The effect of mixed crop treatments exhibited significant influence on plant population/m², capsule/plant, seed/capsule, 1000 seed weight and seed yield of sesame (Table 1). The highest seed yield of sesame was obtained from sole sesame crop (1013 kg/ha). Grain yield of sesame and other yield contributing characters gradually decreased with the increase of seeding ratio of sunflower.

Head diameter, 1000 seed weight and seed yield of sunflower differed significantly due to different seeding ratio (Table 2). The highest seed yield was obtained from sole sunflower. The lowest seed yield of sunflower was obtained from mixed cropped with seeding ratio of 10%. The highest yield of sole sunflower could be due to its maximum seed/head and seed weight. Due to higher population per unit area, the intra and inter crop competition increased which resulted in lower yield/plant.

Cost benefit analysis

The sole sunflower produced the highest sesame equivalent yield. The highest gross return, gross margin and benefit cost ratio were obtained from sole sunflower. The result showed that mixed cropping of sesame and sunflower was not found feasible. For more confirmation the trial should be continued in next year.

Treatments	Plant pop./m ²	Plant height (cm)	Capsule/ plant	Seed/ capsule	1000 seed weight (g)	Seed yield (kg/ha)
100% Sesame	30.00a	86.33a	50a	52a	2.20a	1013a
100% Sunflower	-	-	-	-	-	-
100% Sesame + 10% Sunflower	27.00ab	83.67ab	39b	39b	2.09b	594b
100% Sesame + 20% Sunflower	25.33ab	80.67b	37b	35b	2.05bc	440c
100% Sesame + 30% Sunflower	22.00b	80.00b	30c	31b	2.01c	337d
LS	*	*	*	*	*	*
CV (%)	10.08	2.91	6.21	11.85	1.51	5.75

Table 1. Effect of mixed cropping on the yield and yield attributes of sesame at Banerpota Farm, Satkhira during Kharif season, 2003

Means followed by common letters are statistically similar at 5% level.

Table 2. Effect of mixed cropping on the yield and yield attributes of sunflower at Banerpota Farm,Satkhira during Kharif season, 2003

Treatments	Plant height (cm)	Head diameter (cm)	Seed/head	1000 seed weight (g)	Seed yield (kg/ha)
100% Sesame	-	-	-	-	-
100% Sunflower	127	14.67a	414	70.25a	1416a
100% Sesame + 10% Sunflower	117	13.45b	400	68.96b	162d
100% Sesame + 20% Sunflower	120	13.10c	391	67.67c	299c
100% Sesame + 30% Sunflower	124	12.93c	390	67.35c	425b
CV (%)	5.26	1.18	3.46	1.00	5.04

Means followed by common letters are statistically similar at 5% level.

Table 3. Cost and return analysis of sesame and sunflower

Treatments	Sesame equivalent (kg/ha)	Sesame Gross equivalent return (kg/ha) (Tk/ha)		Gross margin (Tk/ha)	Benefit- cost ratio	
100% Sesame	1013	12156	9150	3006	1.33	
100% Sunflower	1416	16992	11790	5202	1.44	
100% Sesame + 10% Sunflower	756	9072	8950	122	1.01	
100% Sesame + 20% Sunflower	739	8868	8900	-32	0.99	
100% Sesame + 30% Sunflower	762	9144	9010	132	1.01	

Price (Tk./kg): Sesame : 12.00 Sunflower: 12.00

INTERCROPPING GROUNDNUT WITH CHILLI

Abstract

The field experiment was conducted of Farming systems Research & Development site Lebukhali, Patuakhali during rabi 2002-03 to find out agronomic performance of inter cropping groundnut with Chilli. The highest yield of (3.06) was recorded from sole Chilli.

Introduction

Intercropping is the growing of two or more crops or cultivars simultaneously in the same piece of land in alternate rows or set of rows. Most of the farmers practice inter cropping, in which one of the crops is usually regarded as the main crop and the other as the inter crop. Recently intercropping has been recognized by the farmers as a potentially beneficial system of crop production. Intercropping often gives higher cash return and total production per hectare than growing one crop alone. Intercropping is commonly practiced in densely populated countries like Bangladesh to provide more food. In Patuakhali district, Chilli is a major rabi crop generally grown as sole crop. Groundnut is grown sporadic and in some pocket areas. So, to increase the production of groundnut, intercropping may be good practice. There fore, the experiment was undertaken to increase groundnut production of the locality and to find out agronomic performance of inter cropping groundnut with Chilli.

Materials and Methods

The experiment was conducted under rainfed condition at FSRD site Lebukhali, Patuakhali during rabi season of 2000-03. The experiment was laid out in RCB design with 5 replications. The unit plot size was 6 m x 5 m. The five treatments were, T_1 = Sole Chilli, T_2 = One row of Chilli alternate with one row groundnut, T_3 = One row Chilli of alternate with two row groundnut T_4 = One row Chilli alternate with three rows groundnut T_5 = Sole Groundnut. Seed of groundnut (var. ACC-12) and Chilli (var. Local) were sown on 23 December with spacing 40 cm x 25 cm for Chilli and 40 cm x 15 cm for groundnut. A fertilizer dose of 210kg/ha urea 300kg/ha of TSP and 200kg/ha of MP were used. All fertilizer was applied as basal at the time of final land preparation. During cropping period only 30 mm rainfall was obtained in 2002-2003. Harvest completed 20 May, 2003.

Result and Discussion

The highest yield of Chilli 1570 kg/ha were obtained from Chilli sole crop followed by 1C: 1G combination. The highest yield of groundnut 2430 kg/ha were obtained from sole groundnut followed by 1C: 3G combination. The highest Chilli equivalent yield was recorded from soil Chilli. All the intercropped system failed to show higher Chilli equivalent yield and gross return. But the highest gross margin was obtained from sole groundnut but due to higher cost it failed to earned higher benefit than sole Chilli.

Conclusion

This is first year experiment .It repeat next year and treatment combination will be rearranged.

Treatment	Plant/plot		Yield	(kg/ha)	Chilli equivalent	LED
Treatment	Chilli	Groundnut	Chilli	Groundnut	yield (kg/ha)	LEK
Sole Chilli	240	-	1570	-	1570	1.00
1C :1G	120	200	805	1285	1447	1.04
1C : 2G	90	225	700	1375	1387	1.01
1C: 3G	60	300	456	1798	1355	1.03
Sole groundnut	-	400	-	2430	1215	1.00

Table-1. Yield, equivalent yield and LER of Chilli and groundnut intercropping

Table 2. Cost and return of Chilli and Groundnut intercropping at Patuakhali during rabi 2002-03

Treatment	Gross return (Tk./ha)	Production cost (Tk./ha)	Gross margin (Tk./ha)	BCR
Sole Chilli	62800	20500	42300	3.06
1C : 1G	57880	21500	36380	2.69
1C : 2G	55480	21500	33980	2.58
1C :3G	54200	21500	32700	2.52
Sole groundnut	48600	20000	46000	2.43

C= Chilli , G= Groundnut

(Rainfed Farming)

PERFORMANCE OF DIFFERENT CHICKPEA CULTIVARS UNDER OPTIMUM MANAGEMENT CONDITIONS IN THE HIGH BARIND TRACT, BANGLADESH

Abstract

Performance of five chickpea cultivars viz. Annigeri, BARI Chola-2, BARI Chola-3, BARI Chola-5 and local were evaluated under rainfed conditions in the High Barind Tract. For all the cultivars dry matter accumulation (DM) and crop growth rate (CGR) were maximum at pod-filling stage. Annigeri gave markedly higher DM from pod-filling stage to maturity over other cultivars. Further Annigeri had distinctly superior CGR at pod-filling stage but it dropped quickly at maturity. Because in general the cultivars were 3-5 days earlier in comparison to other varieties. Thus Annigeri is suitable for avoiding terminal stage drought. Over the years, Annigeri gave the highest seed yield, 100-seed weight and apparently higher harvest index (HI). However, 23 more days were required for completion of life cycle of all cultivars in 2002-03 as compared to 2001-02 due to exceptionally low temperature and foggy weather in January, 2003. To complete the life cycle of the plants 24°1-.27°C days were required in 2001-02, whereas 2982.82°C days were needed in 2002-03. All the cultivars produced lower grain yield in 2002-03 in comparison to previous year due to reduced portioning of photoassimilates to seed, because excessive rainfall enhanced robust vegetative growth at the cost of seed yield.

Introduction

Bangladesh Agricultural Research Institute (BARI) has released several cultivars. From a recent Ph. D. experiment (Ali, 2000) it was proved that two other cultivars Annigeri and ICC 4958 seems to be better yielded in the High Barind Tract (HBT). Moreover, Ali (2000) identified some traits for the improvement of chickpea for HBT, among them one of the trait was genotype with moderate growth duration which can complete its pod formation before the onset of supra-optimal temperature (>30°C). Annigeri has about one week shorter growth duration in comparison to other released varieties and local cultivars. Another important trait was genotype with deep and prolific rooting capability. Again many workers (Ali, 2000, Krishnamurthy et al., 1996, Saxena et al., 1993)) reported that ICC 4958 and Annigeri had prolific root system across location in drought conditions.

Therefore, those cultivars along with Bangladesh released varieties were evaluated under rainfed optimum management conditions through different agronomic and physiological indicators.

Materials and Methods

The experiment was conducted under rainfed condition for consecutive two years at Chabbisnagar FSRD site, Rajshahi during Nov-March, 2001-02 and Nov-April, 2002-03. Five chickpea cultivars were tested namely, Annigeri, BARI Chola 2, BARI Chola 3, BARI Chola 5 and Rajshahi local. The experiment was laid out in randomized complete block design with three replications, having 20 m² units plot size. The experimental land was prepared well by bullock and power-tiller. Fertilizers were applied at the time of final land preparation. Fertilizers (kg ha⁻¹) were applied at the rate of N₂₀ P₂₀ K₂₀ S₁₅. Seeds were sown on 20 November 2001 and 17 November 2002, maintaining a spacing of 40cm x 10cm. The crops were kept weed and pest free.

For recording dry matter (DM) accumulation over time 5 plants were harvested at random from 35 days after sowing to maturity of the crop. Five plant weights were converted to per m^2 for calculating crop growth rate (CGR). CGR was calculated:

Yield and yield attributes data were recorded from randomly selected 10 plants from each plot. Seed and hay yields were taken from a sample area of 6 m^2 for each plot. Annigeri was harvested on 21 March 2002 and all other varieties were harvested on 26 March 2002. In 2003 all the five cultivars were harvested on 10 April. The collected data were analyzed statistically.

Results and Discussion

Dry matter (DM): All the three BARI released chickpea varieties had good DM accumulation at vegetative stage, however, from pod-filling stage Annigeri had distinct superiority in DM production over four other cultivars, particularly at pod-formation stage (Figure 1a and 1b). BARI Chola 3 had also good DM accumulation at pod-filling stage but it sharply decreased from 110 and 120 days in BARI 2001 & 2002 respectively, resulted in inferior DM. In 2002 at the later stage of growth (110-120 DAS) Rajshahi local gave apparently superior DM production over the BARI released varieties, however in 2003 at later stage of growth (110-130 days) it produced the lowest DM.

Rapid DM production at flowering to pod-filling stages indicated that chickpea plants need sufficient water and nutrients to achieve the yield potential associated with other environmental factors such as clear sunshine and particularly air temperature below 30° C (Ali, 2000).

Crop growth rate (CGR): Due to distinct difference (rainfall, temperature and sunshine hours) between weather conditions of 2001-02 and 2002-03 chickpea growing period, the CGR curve varied widely. For 2001-02 a typical CGR curve was obtained, which was not observed in 2002-03. At vegetative stage BARI Chola 3 had the highest CGR (Figure 2a and 2b), but it rapidly dropped at pod-filling stage. Annigeri had slow CGR at vegetative stage but it increased geometrically at pod-filling stage and attained its peak at 80-90 days and then it became negative at 95-110 days, as it was comparatively a short duration genotype (Ali, 2000, Rao and Rao, 2000). By contrast all other four varieties had positive CGR up to 95-110 days and they had negative CGR only at maturity (110-120 days). Thus Annigeri had the advantages to avoid terminal drought, which often occurred at pod-filling to ripening stages of the crops in the HBT region (AEZ 26).

Growing degree day (GDD)/Thermal time: GDD or thermal time starts with the assumption that the growth of plants is dependent on total amount of heat it required to initiate or complete a physiological process or to complete its life cycle.

In 2001-2002 when in general normal weather conditions (Figure 3) prevailed chickpea plants required 24°-27°C day for completing its life cycle. While in 2002-03 when the month of January was abnormally cool (Fig 3) and foggy (i.e. less sunshine hour) it required 2982.82°C days for completion of its life cycle. Thus 581.55° C days more were needed in 2002-03 compared to 2001-02 to recover from cooling effect (vernalization). As it is reported that optimum temperature regime of chickpea is 25°/10° C day/night (Khanna-Chopra and Sinha, 1987). Thus duration of crop is modified by prevailing temperature regimes. From the results of controlled environment it was observed that duration of chickpea reproductive growth was short (67 to 71 days) in 30/18° C day/night temperatures compared to 96 to 112 days at 22/10°C day/night (Roberts et al., 1980). Further if we consider same duration (121 days) of crops for both years, it revealed that only 86.77°C day was less for 2002-03 year crop compared to 2001-02 year crop resulting in 23 more days or 581.55°C day for completion of life cycle. The findings suggest that probably 2401.27°C day could be within optimum thermal time regime for completing the life cycle of chickpea crop for normal year.

Yield and yield attributes:

Annigeri gave the highest seed yields in both years due to combined effects of good number of pods/plant, seed/pod and the heaviest 100-seed weight (Table 1). However in 2002-2003, BARI Chola-5 and BARI Chola-3 were at par with seed yield of Annigeri. In proper management situation the potential of local cultivar was distinct in 2001-02. But in 2003 local variety gave the lowest seed yield, but it was identical to BARI Chola-2 and BARI Chola-3. Other workers also reported that Annigeri produced higher yield over BARI Chola 2 and 5, particularly in drought year in the HBT. The two years consistent result indicated that Annigeri could be considered as an effective alternative for BARI Chola-5, BARI Chola-2 and BARI Chola-3, which would be needed for widening the genetic base for avoiding sudden decrease of yield level due to disease, pest and drought. Significantly heaviest seed weight was obtained from Annigeri, while had the lowest weight.

In both the years Annigeri possessed apparently the highest harvest index (HI) over other cultivars. One of the reasons of higher seed yield by Annigeri was due to its rapid dry matter partitioning to seed at pod-filling stage.

Difference between the yield and duration of two years crops were due to excessive rainfall at podfilling stage and abnormally low temperature in January 2003. In 2002-03 harvest index low in comparison to previous year due to excessive vegetative growth because of high rainfall. Thus for a legume crop like chickpea partitioning of dry matter to seed is the key deciding factor for obtaining potential yield. Because an excess of soil moisture caused by frequent rain or too much irrigation, leads to excessive vegetative growth, at the expense of seed.

Conclusions

Genotype Annigeri produced higher seed yield over the years due to genetic factor (bigger seed size and more number of pods per plant) as well as physiological factors, such as, rapid dry matter partitioning to grain at pod-filling stage and by escaping terminal high temperature through its shorter growth duration. Hence, Annigeri could be regarded as an alternative cultivars than the existing cultivars.

References

- Ali, M. Y. 2000. Influence of phosphorus fertilizer and soil moisture regimes on root system development, growth dynamics and yield of chickpea. Ph. D. Thesis, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur, Bangladesh.
- Krishnamurthy, L., C. Johansen and O. Ito. 1996. Genotypic variation in root development and its implications for drought resistance in chickpea, pp. 235-250. *In* Dydamics of Roots and Nitrogen in Cropping Systems of the Semi-Arid Tropics (O. Ito, C. Johansen, J. J. Adu-Gyamfi, K. Katayana, J. V. D. K. Kumar Rao and T. J. Rego, eds.). Japan International Center for Agricultural Sciences.
- Khanna-Chopra, R. and S. K. Sinha. 1987. Chickpea: physiological aspects of growth and yield, pp. 163-189. *In* The Chickpea (eds. M. C. Saxena and K. B. Singh). Pub. By CAB International.
- Rao, G, V, R. and V. R. Rao. 2000. Packages of practices for chickpea cultivation. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, A. P. India.
- Roberts, E. H., R. J. Summerfield., F. R. Minchin and P. Hadley. 1980. Phonology of chickpeas (Cicer arietimum L) in contrasting aerial environments. Expl. Agric. 16:343-360.
- Saxena, N. P., L. Krishnamurthy, and C. Johansen. 1993. Registration of a drought- resistant chickpea germplasm. Crop Science 33: 1424.
- Table 1. Yield and yield attributes of different chickpea genotypes at High Barind tract, Rajshahi,2002-03

Construes	Plant	Deda/mlant	100-seed	Grain Yie	eld (t/ha)	111*
Genotypes	height (cm)	Pous/plant	wt. (g)	01-02	02-03	пі.
Annigeri	46.05a	53	18.65a	1.84a	2.01a	48.05a
BARIChola-2	38.90a	39	11.70c	1.33bc	1.80b	41.65a
BARIChola-3	46.37a	41	15.42b	1.44abc	1.75b	42.10
BARIChola-5	46.05a	42	12.22c	1.59ab	1.85b	45.41
Local	39.10a	47	10.80e	1.07c	1.81b	39.53a
CV (%)	11.8	9.2	7.2	17.3	8.1	13.6

Means followed by a common letter are not significantly different at the 5 % level by DMRT. * HI = Harvest Index

Rainfed farming

Figure 3. Fortnightly mean air temperature and total rainfall during chickpea growing period, High Barind Tract, Rajshahi, 2001-03

RESPONSE OF T.AMAN-CHICKPEA CROPPING PATTERN TO APPLIED PHOSPHORUS IN THE HIGH BARIND TRACT, BANGLADESH

Abstract

Residual effect of P in chickpea was evaluated in previous wet land rice crop (T.Aman rice) along with P and/or P + irrigation. In 2001-02, no positive response of residual P was observed for chickpea yields and yields attributes; rather, in general P application (20 kg P ha⁻¹) under both irrigated or non-irrigated conditions gave higher grain yield. However, in 2002-03 (which was environmentally different from normal year) residual effect of P was observed for chickpea crop applied in previous T.Aman rice. In T.aman rice when 20 to 60 kg P ha⁻¹ was applied, it gave comparatively higher chickpea yields over no P fertilizer either under irrigated or rainfed conditions. For both year P application response in T.Aman rice was also not significant.

Introduction

The availability of soil P or added P is very important for root and shoot growth, as well as for partitioning of dry matter to seed (Ali, 2000, Tandon, 1987). Again availability of soil P added P depends on optimum soil moisture (Saraf et al., 1990, Singh and Sharma, 1980, Kulthare et al., 1988). However, residual effect of P is clearly proved in Bangladesh and elsewhere (Abedin and Mukhopadhyay, 1990; Tandon, 1987). In the HBT, T.Aman - Chickpea is a major cropping pattern. If proper amount of P is applied to T.Aman rice, probably it can compensate the demand of P for chickpea in the HBT context. Moisture holding capacity of HBT soil is poor due to critical organic matter contents and low infiltration rate of water (Ali, 2000). In such a situation if soil is opened by plowing or furrowing and exposed to sun drying for long time, soil moisture goes out quickly resulting in poor germination of seeds. Moreover, fertilizer response was not studied in the HBT for the T.Aman-Chickpea cropping pattern. So the present experiment was taken with the following objectives:

- To find out the residual effect of P fertilizer on chickpea used in previous T, aman rice
- To find out the interaction between P x soil moisture on chickpea

Materials and Methods

The experiment was conducted for consecutive two years (July to March, 2001-02 and 2002-03) at FSRD site Chabbisnagar, High Barind Tract (HBT), Rajshahi, T.aman rice variety BRRI Dhan 39 was transplanted (35 days old seedlings) on 28 July, 2001 and 20 July, 2002, maintaining a spacing of 25cm x 15 cm. The experiment was set up in a RCB design with three dispersed replications. The unit plot size was 6 m x 10 m. Four Phosphorus (P) fertilizer doses 0, 20, 40 and 60 kg P ha⁻¹ were tested,. Source of P was triple super phosphate and applied as basal. The common fertilizer doses for all the treatment were N₇₀ K₄₀ S₂₀ Zn₁ kg ha⁻¹ applied in the form of urea, muriate of potash, gypsum and zinc oxide, respectively, applied at the time of final land preparation. T.Aman rice was harvested at maturity on 29 October 2001 and 21-30 October 2002, respectively.

Each rice plot was divided into four equal parts (15 m²) and the four treatments were imposed such as one irrigation at 40 DAS with zero P, one irrigation at 40 DAS with P_{20} , rainfed with zero P & rainfed with P_{20} . Sixteen treatment combination (four P levels of T.Aman rice & four for chickpea) were tested (Table 4).

Chickpea crop (BARI Chola 2) was sown on 19 November, 2001 and 31 Oct to 3 Nov, 2003, maintaining a spacing of 40 cm x 10 cm following RCB design with three dispersed replications. Only one light irrigation was applied at 40 days after sowing for irrigated treatments. Phosphorus fertilizer was applied as TSP in each furrow just before the sowing of seeds to maximize uptake (Arihara and Okada, 1991). All other common fertilizer ($N_{20} K_{20} S_{15} B_1 \text{ kg ha}^{-1}$) was applied as basal in the form of urea, muriate of potash, gypsum and boric acid. Chickpea was harvested at maturity on 15 March 2002 and 8 March 2003.

For T.Aman rice and chickpea, yield attributed data were recorded at physiological maturity from 10 randomly selected plants from each plot. Soil samples were chemically analyzed before planting of T.Aman rice and after harvest of T.Aman. Soil samples were collected after chickpea and sent for chemical analyses but data yet not received.

Table 1. Nutrient status of initial soil sample* (0-15 cm depth) before the transplanting of T.aman rice, HBT, 2001

mII	U Organic meq/100g soil				Micro g/g soil				
рН	matter (%)	Ca	Mg	Κ	% Total IN	Р	S	В	Zn
5.7	0.82	4.72	2.05	0.26	0.07	6.17	15	0.18	1.22

*Composite sample, mean of three replications.

Table 2. Nutrient status of soil sample* after harvest of T.Aman rice (0-15 cm depth), HBT, 2001

Treatment pH 0		Organic	me	q/100g s	soil	%	Micro g/g soil			
Treatment	рп	matter (%)	Ca	Mg	Κ	Total N	Р	S	В	Zn
P ₀	6.55	0.75	5.1	1.9	0.18	0.04	2.9	6.00	0.28	0.83
P ₂₀	6.55	0.81	5.4	2.0	0.22	0.04	3.9	8.80	0.27	1.00
P_{40}	6.20	0.786	4.6	1.9	0.30	0.04	5.9	9.80	0.46	0.95
P ₆₀	6.05	0.82	4.9	2.0	0.28	0.05	7.35	8.00	0.38	0.90

*Mean of three replications

Results and Discussion

Effect of T.aman rice

T.Aman rice yield and any one of the yield attributes were not significantly influenced by application of phosphate (P) for both years (Table 3), though status of available soil P was low (Table 1). This could be due to the fact that under flooded conditions non-labile P became labile. Because in most soils there is an increase in available P after flooding, largely due to a conversion of Fe^{3+} phosphate to soluble Fe^{2+} phosphate and hydrolysis of Al phosphate. Other mechanisms resulting in increased P availability following submergence include dissolution of occluded P, hydrolysis of Fe phosphate, increased solubility of Ca phosphate in calcareous soils, and greater diffusion of P. However, soil P status (after rice harvest) was slightly increased because of application of P in T.Aman (Table 2).

Chickpea: Phosphorus that was applied in previous T.Aman rice had no effect on succeeding chickpea crop (Table 4). Rather higher grain yields were obtained from the treatments where P fertilizer and/or P + irrigation were applied except the treatments $RP_{40}I_1P_0$ and $RP_{20}I_1P_0$. As chickpea canopy growth was comparatively poor, effect of P on yield was also not always large. Ali (2000) clearly proved that P response to chickpea crop depends on good canopy growth and the uptake of P in HBT could vary from 3 kg to 15 kg ha⁻¹. Moreover, due to moisture stress conditions at later stage of the crop growth P diffusion (the major way of P anion movement from soils to root surface) was supposed to be very low. As under moisture stress the water films around the soil particles are thin and path length increases, reducing P diffusion to the roots. Despite that N and P are important for high yields when water is limiting (Tisdale et al., 1997), particularly for legumes P requirement is more (Tandon, 1987).

The above results indicate that residual effect of P in T.Aman-chickpea cropping pattern was not visible probably because of shifting of land from wet conditions to complete dry conditions. Therefore, it appears that P should be applied in chickpea irrespective of amount of P fertilizer applied in previous T.Aman rice. The results are in agreement with Ali (2000) who suggested 20 kg P ha⁻¹ for chickpea production in HBT.

However, the environment of 2002-03 was largely different from pervious year because at active vegetative stage of the crop temperatures of whole January was abnormally cool and foggy. Mean maximum and minimum temperatures of January, 2003 were 22.4°C and 8.7°C, respectively. And

minimum temperatures of 8-24 January were 8.4-6.6°C and for two days temperatures were as low as 4.3-4.8°C. Those temperatures were much below the optimal temperatures range (Khanna-Chopra and Sinha, 1987) and severely hampered the normal growth of the plants. Moreover about 18 mm rainfall at pod-filling stage and continuous foggy weather made the microenvironment of chickpea canopy moist which promoted vegetative growth at the cost of seed yield. In general, higher seed yield was obtained from the treatment where P was applied in T.Aman rice over the treatment where P was not applied in T.Aman rice despite the application of P in chickpea in 2002-2003. The present results indicated that residual effect of P (applied in T.Aman rice) in succeeding chickpea crop could be visible in good rainy year, probably due to availability of non-labile soil-P because of good soil moisture. However, the fate of P applied in chickpea was not clearly understood.

Conclusions

In 2001-02, residual effect of P was not observed in chickpea applied in previous T.Aman rice. In general application of 20 kg P ha⁻¹ gave higher grain yield in chickpea. But residual effect of P was observed in chickpea applied in previous T.Aman rice, irrespective of P or irrigation applied or not for chickpea in 2002-03. The experiment should be continued for the third year for having a realistic conclusion because the year 2002-03 was environmentally different from normal year.

References

- Arihara, J., N. Ae and K. Okada.1991. Improving responses of chickpea and pigeon pea to phosphorus application in Vertisols and Alfisols, pp. 157-165. *In* Phosphorus Nutrition in Grain Legumes in the Semi- Arid Tropics (C. Johansen, K. L. Lee and K. L. Sahrawat, eds.), ICRISAT, Patancheru, India.
- Abedin, M. Z and D. Mukhadhyay. 1990. Cropping system based fertilizer recommendations and soil fertility investigations in farmer's fields. On-Farm Research division, Bangladesh Agricultural research institute and Food and Agricultural Organization of the United Nations, pp.53.
- Ali, M. Y. 2000. Influence of phosphorus fertilizer and soil moisture regimes on root system development, growth dynamics and yield of chickpea. Ph. D. Thesis, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur, Bangladesh, pp, 221.
- Kulhare, P. S., K. P. Tiwari, R. N. Saran and J. P. Dixit. 1988. Effect of irrigation scheduling and phosphorus doses on chickpea (*Cicer arietinum*) in deep Vertisols. Indian Journal of Agricultural Sciences, 58: 911-914.
- Khanna-Chopra, R. and S. K. Sinha. 1987. Chickpea: physiological aspects of growth and yield, pp. 163-189. *In* The Chickpea (eds. M. C. Saxena and K. B. Singh). Pub. By CAB International.
- Saraf, C. S., B. Baldev, M. Ali and S. N. Silim. 1990. Improved cropping systems and alternative cropping practices, pp. 105-108. In Chickpea in the Nineties: Proceedings of the Second International Workshop on Chickpea Improvement, 4-8 Dec. ICRISAT, Patancheru, India: ICRISAT.
- Singh, S. and H. C. Sharma. 1980. Effect of profile soil moisture and phosphorus levels on the growth and yield of and nutrient uptake by chickpea. Indian Journal of Agricultural Sciences 50: 943-947.
- Tandon, H. L. S. 1987. Phosphorus Research and Agricultural Production in India, New Delhi, India: Fertilizer Development and Consultation Organization, pp. 7, 79.

P levels	Plant height	Domiala m ²	Filled grain/	Grain yield (t/ha)		
(kg/ha)	(cm)	Panicie m	panicle	2002-03	2001-02	
0	102.85	208	81	3.22	2.92	
20	107.00	219	92	3.68	3.16	
40	103.12	222	91	3.75	3.38	
60	103.57	223	92	3.76	3.63	
F.test	NS	NS	NS	NS	NS	
CV (%)	4.9	9.9	11.2	11.5	7.8	

Table 3. Yield and yield attributes of T.Aman rice (cv. BRRI dhan39) as affected by applied phosphorus, HBT, Rajshahi, Bangladesh, 2002

Table 4. Effect of residual phosphorus (applied in T.Aman rice), applied P and irrigation on the performance of chickpea (BARI Chola 2), High Barind Tract, Rajshahi, 2002-03

Traatmant	Plant eight	Pods/plant	100-seed wt.	Seed yield	(t/ha)
Heatment	(cm)	rous/ plain	(g)	2002-03	2001-02
$RP_{60}I_0P_0$	42.03a	30	11.00a	0.99ab	0.90cd
$RP_{60}I_0P_{20}$	38.26a	32	12.10a	1.03ab	1.12a-d
RP60 I1P0	37.73a	33	12.20a	1.17a	0.86cd
$RP_{60}I_1P_{20}$	41.16a	35	12.80a	1.25a	1.42a
$RP_{40}I_0P_0$	39.96a	31	11.00a	1.09ab	0.80bcd
$RP_{40}I_0P_{20}$	37.90a	34	11.40a	1.20a	0.93bcd
$RP_{40}I_1P_0$	42.26a	35	11.80a	1.23a	1.09a-d
$RP_{40}I_1P_{20}$	40.50a	37	12.10a	1.30a	1.41a
$RP_{20}I_0P_0$	38.06a	29	10.71a	0.95ab	0.80d
$RP_{20}I_0P_{20}$	38.63a	30	11.11a	1.06ab	1.02bcd
$RP_{20}I_1P_0$	40.16a	26	11.12a	0.97ab	1.21abc
$RP_{20}I_1P_{20}$	39.20a	31	11.37a	1.08ab	1.26ab
$RP_0I_0P_0$	34.80a	21	10.90a	0.68b	0.82d
$RP_{0}I_{0}P_{20}$	33.90a	23	11.13a	0.69b	1.07a-d
$\mathbf{RP}_{0}\mathbf{I}_{1}\mathbf{P}_{0}$	38.06a	19	10.19a	0.67b	0.90cd
$RP_0I_1P_{20}$	34.06a	19	10.57a	0.67b	1.12a-d
CV (%)	10.2	29.1	4.1	23.2	17.5

Same letter in a column do not differ significantly at 5 % level by DMRT.

RP = Phosphorus applied in previous T.Aman rice, I_0 = Non-irrigated, I_1 = One irrigation at 40 DAS, All P in kg P ha⁻¹, designated as P suffix

MULTILOCATION YIELD TRIAL OF CHICKPEA IN THE HIGH BARIND TRACT

Abstract

An on-farm trail was conducted at FSRD site, Chabbishnagar and MLT site, Nachole during rabi season, 2002-03 to evaluate the performance of the advance materials over locations. Five entries of chickpea viz. Special plant-7, Special plant-3, BCX –91044-3, BCX –91043-1, BCX –91040-3 and BARI Chola 5 were evaluated in the study. From this study it was observed that tested entries could not able to out yield BARI Chola5 in both location.

Introduction

In Bangladesh Chickpea (*Cicer arietinum* L.) is the third most important pulse in respect of area and production with an average yield of 765 kg/ha. Its yield is probably most unstable among pulses due to its more sensitivity to micro environment. On the other hand, it has got the highest yield potentiality under favorable environment. Chickpea is found to be a very suitable for dry land rabi crop with residual soil moisture condition. Under Barind stress situation it can be successfully grown after harvesting of short duration T.aman rice. However, more number of varieties are needed for widening the genetic base as well as to avoid dependence on few cultivars. Therefore, the aim of the experiment was to evaluate the performance of advance chickpea germplasms over locations.

Materials and Methods

The trial was conducted at FSRD site, Chabbishnagar, Rajshahi and MLT site, Nachole during rabi season in 2002-2003. The experiment was laid out in a randomized complete block design with four replications. The unit plot size was 8m x 4m. Five entries of chickpea viz. Special plant-7, Special plant-3, BCX –91044-3, BCX –91043-1, BCX –91040-3 and BARI Chola 5 were included in the study. The seeds were sown in 30 cm row spacing with continuous sowing. The seeds were sown on 28 October 2002 at FSRD site, Chabbishnagar and 29 November 2002 at MLT site, Nachole. The seed rate was maintained 50 Kg/ha. Nitrogen, phosphorus, potassium were applied as basal during final land preparation at the rate of 20 kg N, 40 kg P_2O_5 and 20 kg K₂O per hectare in the form of urea, triple super phosphate and muriate of potash, respectively. The crops were harvested on 18 March 2002 at FSRD site, Chabbishnagar and on 31 March 2002 at MLT site, Nachole. Data were collected on different yield components and yield. Analyzed statistically and the differences between treatment means were evaluated by LSD test.

Results and Discussion

Chabbisnagar, FSRD site

No significant variation was observed for yield and yield attributes of different chickpea entries and BARI Chola 5 (Table-1). Numerically the tallest plant (57.45 cm), the highest number of pods /plant (56.18) and the heaviest seed weight (14.38 g) were produced by BARI Chola 5 and all these together contributed to the apparently the highest seed yield (1402 kg/ha) in BARI Chola 5.

Nachole, MLT site

Numerically the tallest plant (45.35 cm), the highest number of pods/plant and the heaviest 100-seed weight (14.13) were observed in BARI Chola 5 which reflected the highest seed yield (718.75 kg/ha) by this variety. The lowest seed yield (570.31 t/ha) was observed in Special plant-7. Overall performance of yield and yield attributes were not satisfactory because attack of pod borer, late sowing and sudden rainfall at pod filling stage. In both the location maturity among different entities and variety were almost same.

Conclusion

In both the locations the tested new entries could not able to out yield check variety BARI Chola5. Hence, more number of potential entries is to be searched out from home and abroad for achieving high yield potential.

	Dlant haight	Pods	100-seed	Seed	Duration				
Treatment	Plant neight	plant ⁻¹	weight	yield	(days to				
	(cm)	(No.)	(g)	$(kg ha^{-1})$	harvest)				
Chabbishnagar									
T ₁ =Special plant-7	53.75	54.80	13.53	1252	131				
T ₂ =Special plant-3	52.40	47.35	13.00	1187	131				
T ₃ =BCX-91044-3	56.00	42.60	14.00	1150	131				
T ₄ =BCX-91043-1	56.80	42.20	14.05	1142	131				
T ₃ =BCX-91040-3	55.30	55.95	14.05	1257	131				
T ₆ =BARI Chola 5	57.45	56.18	14.38	1402	130				
LSD (0.05)	NS	NS	NS	NS	NS				
CV (%)	5.00	11.30	5.58	11.65	0.72				
		Nachole	9						
T ₁ =Special plant-7	41.75	33.70	14.00	570c	130				
T ₂ =Special plant-3	44.45	38.05	14.08	680ab	129				
T ₃ =BCX-91044-3	42.25	33.25	13.63	625bc	129				
T ₄ =BCX-91043-1	44.10	36.20	13.75	664ab	130				
T ₃ =BCX-91040-3	41.80	32.25	13.25	601bc	130				
T ₆ =BARI Chola 5	45.35	36.95	14.13	719a	130				
LSD (0.05)	NS	NS	NS	87.83	NS				
CV (%)	10.69	12.60	5.85	9.06	1.02				

Table 1.Performance of different entries of chickpea and BARI Chola-5 at FSRD site, Chabbishnagar, Rajshahi and Nachol, Chapainababgonj during 2002-03

ADVANCED YIELD TRAIL OF CHICKPEA IN THE HIGH BARIND TRACT

Abstract

A field experiment was carried out in farmer's field at FSRD site, Chabbishnagar, Rajshahi during Rabi, 2002-2003 to evaluate the performance of promising BGM and wilt resistant lines. Nine advanced line of chickpea viz. BCX-91010-1, ICCV-98939, ICCV-98936, ICCV-94916-8, ICCX-5100206-2, ICCV-95138, ICCV 97004, BZX 910109-3, ICCV 96020 and two checks (BARI Chola-5 & ICCL 87322) were tested. The entry ICCV 97004 (1.55 t/ha) and ICCV 98936 (1.51 t/ha) produced the highest yield and significantly different from the check variety/line

Introduction

Chickpea (*Cieer arietinum L*) is the third major pulse crop in Bangladesh (BBS.1997). It is one of the best grain legumes for human and animal consumption. It contributes about 20 percent of the total pulses (BBS, 1992). It is normally cultivated in the winter season on conserved soil moisture. Its average yield in Bangladesh is far below the yield level achieved by many other chickpea growing countries (BARC, 1975). The yield of chickpea is probably most unstable among pulses due to its more sensitivity to micro-environment conditions (Musa and Kar, 1995). On the other hand, it has got the highest yield potentiality under favourable environment. Such low yield might be attributed to the lack of high yielding and disease resistance varieties, inadequate fertilizer use and inappropriate cultural practices. Chickpea is found to be a very suitable under dry land rabi crop with residual soil moisture condition. Under Barind stress situation it can be successfully grown after harvesting of short duration T.aman rice. BGM and wilt is a major disease of chickpea production in Bangladesh. So, this present trial was initiated with the objective to select lines against BGM and wilt.

Materials and Methods

The trial was conducted at FRSD site, Chabbishnagar Rajshahi during Rabi 2002-03. The experiment was laid out in a randomized block design with three replications. The unit plot size was 6 rows X 4 m. The seeds were sown in 40 cm row spacing with continuous sowing. Eleven advanced lines/varieties viz. BCX-91010-1, ICCV-98939, ICCV-98936, ICCV-94916-8, ICCX-5100206-2, ICCV-95138, ICCV 97004, BZX 910109-3, ICCV 96020, BARI Chola-5, ICCL 87322 were included in the study. Seeds were sown on 28 October 2002. The seed rate was maintained 50 kg/ha. The land was fertilized at the rate of 20-40-20 N, P₂O₅, K₂O kg/ha in the form of urea, TSP and MP respectively. All fertilizers were applied as basal during the final land preparation. The crops were harvested on 18 March 2003. The seed yield and other related data were recorded and analyzed statistically.

Results and Discussion

Days to flowering ranged from 78 to 82. The days to flowering differed among different lines. The entry ICCV 94916-8, ICCX 9100206-2 and BCX 910109-3 took maximum (82) and line ICCL 87322 (78) took the minimum number of days for flowering (Table 1). Days to maturity ranged from 116 to 126. The entry ICCV 95138 and ICCV 96020 took the maximum (126) and entry BCX-91010 1 (116) took the minimum number of days for maturity. The highest percentage of mortality was observed in the line ICCV 94916-8 (4.56%) and the lowest in ICCV 96020 (0%). Significantly the highest plant height was recorded in line ICCL 87322 and the lowest from line ICCX-9100206-2. The highest number of pods/plant was obtained from line ICCV-97004 which was significantly different from other lines and lowest from ICCL-87322. The highest 1000 seed weight was obtained from line ICCV-94916-8 (263.0 g) and lowest from ICCV-98939 (133.1g). Among eleven lines/variety, the highest seed yield (1.55 t/ha) was obtained from the line ICCV-97004 which was statistically identical to ICCV-9836 but superior over other check variety/lines. On the basis of mortality and yield performance, four entries ICCV-97004, ICCV-98936, BCX- 910109-3 and ICCV 989339 may be selected for further evaluation in the next year.

Conclusion

From this study it was observed that some lines were promising for Barind area, however yield was low in comparison to potential yield. On the basis of mortality and yield performance, four entries ICCV 97004, ICCV-98936, BCX 910109-3 and ICCV 989339 may be selected for further evaluation in the next year.

Entries	Days to flowering	Days to maturity	Plant popt ⁿ m ⁻²	Mortality (%)	Plant height (cm)	Pods plant ⁻¹	Grain pod ⁻¹	1000 seed wt.(g)	Seed yield (t/ha)	Straw yield (t/ha)
BCX-91010-1	79	116	29	1.47	56.40	49.27	1.40	155.0	1.08	2.48
ICCV-98939	80	118	31	0.85	54.40	50.67	1.33	133.1	1.43	2.05
ICCV-98936	81	120	34	1.45	55.40	54.33	1.46	139.3	1.51	2.29
ICCV-94916-8	82	119	25	4.56	66.80	49.27	1.40	263.0	1.15	2.04
ICCX-9100206-2	82	122	32	1.37	49.00	45.43	1.33	122.7	1.22	2.25
ICCV-95138	81	126	31	0.44	61.73	46.00	1.33	243.3	1.39	1.91
ICCV-97004	79	125	32	0.11	61.27	66.20	1.40	254.3	1.55	2.17
BCX-910109-3	82	124	23	1.77	57.27	48.60	1.33	225.7	1.46	2.12
ICCV-96020	81	126	24	00	60.07	43.87	1.33	254.7	1.36	2.25
BARI Chola-5	79	122	31	0.16	59.73	55.87	1.46	136.3	1.31	2.20
ICCL-87322	78	121	28	1.56	80.47	38.67	1.26	164.3	0.94	2.14
LSD (0.05) CV (%)	4.81 3.5	4.62 2.06	4.05 8.28	0.37 17.60	9.11 8.86	7.90 9.11	0.18 7.98	21.23 6.59	0.15 6.44	0.33 8.82

Table 1. Performance of some advance lines of chickpea, Chabbishnagar, Rajshahi during 2002-03

EFFECT OF SEED PRIMING ON YIELD AND YIELD CONTRIBUTING CHARACTERS OF DIFFERENT CHICKPEA VARIETIES IN BARIND SOIL

Abstract

An experiment was conducted in farmer's field at FSRD site, Chabbishnagor, Rajshahi during rabi season from November 2002 to March 2003 to study the effect of seed priming on yield and yield contributing character's of different chickpea varieties in Barind soil. Four levels of priming, (Control, 4 hours, 8 hours and 12 hours) and four different BARI released varieties of chickpea (BARI Chola-2, BARI Chola-3, BARI Chola-5 and BARI Chola-8) were used in this study. The result showed that priming seeds produced significantly higher yield than control (Non priming). Among the priming levels, 8 hours priming gave higher yield (1.22 t/ha) than control and other priming techniques. Chickpea yield was influenced by priming among the varieties. Combined effect of varieties and priming techniques, BARI Chola-5 gave better performance at 8 hours priming level and BARI Chola-8 gave better performance at 12 hours priming level.

Introduction

Chickpea (*Cicer arietinum* L.) is the third most important pulse crop in Bangladesh in respect of area and production with and average yield of 765 kg/ha. Chickpea yield is probably the most unstable among the pulse grown in Bangladesh due to the extreme sensitivity to micro-environment conditions. The area and the productivity of chickpea are not encouraging due to lack of suitable cultivars, adverse and variable climatic conditions and various biotic stresses. In the high Barind Tract (HBT), a vast area of land remains fallow during the winter season and there is ample scope of growing chickpea in the area if appropriate management techniques are followed. Chickpea is a very suitable dry land winter crop that can grow well on residual soil moisture. In the water-stressed environment of HBT, it can be grown successfully after harvesting of short duration transplanted aman (t.aman) rice.

Barind region is dry land area, where crop establishment are affected if soil moisture less at the lime of sowing. But there is instance in other crops, that seed priming enhance germination and crop establishment under stress situation. Therefore, this study was undertaken to find out the effect of priming on yield and yield contributing characters of chickpea.

Materials and Methods

The experiment was conducted at FSRD site Chabbishnagor, Rajshahi during Rabi season of 2002-2003. The treatments of the experiment comprised of four different seed priming techniques (Control, 4 hours, 8 hours and 12 hours) and four varieties of chickpea (BARI Chola-2, BARI Chola-3, BARI Chola-5 and BARI Chola-8). This experiment was laid out in a RCB design with 3 replications. The size of each unit plot was 4m x 3m. Nitrogen, phosphorus and potassium were applied as basal during final land preparation at the rate of 20 kg N, 40 kg P₂O₅ and 20 kg K₂O per hectare in the form of Urea TSP and MP, respectively. Seeds were sown in the field on 01 November 2002. The seeds were sown in line sowing method and seed rate was maintained 50 kg/ha. The crop was harvested on 28 March 2002. Weeding and plant protection measures were done as and when required. Data were collected on different yield and yield components and analyzed statistically.

Results and Discussion

Priming techniques had slightly affected on plant population, pods/plant, seed yield and straw yield (Table 1). Among four priming levels, 8 hour's priming produced higher number of plant (27) as well as higher yield (1.22 t/ha) compare to control and other priming techniques. It was observed that plant population, plant height, pods/plant, 1000 seed wt and grain yield were significantly influenced by varieties. The highest plant height (38.61cm) was observed in BARI Chola-3 than other varieties. BARI Chola-5 produced higher number of pods/plant (38.65) compared to other varieties. The highest 1000 seed weight (220.54 gm) was obtained from BARI Chola-8 and lowest (112.40) was in BARI

Chola-2. Among four varieties BARI Chola-5 produced slightly higher grain yield (1.12 t/ha) and the lowest by BARI Chola-2 and BARI Chola-8.

BARI Chola-5 produced higher number of plant population in control, 4 hours and 8 hours priming level but BARI Chola-8 produced higher number of plant population in 12 hours priming level. There was no significant difference in plant height, BARI Chola-5 produced higher number of pods/plant in all priming level than other varieties. BARI Chola-8 produced the highest 1000 seed weight in all priming level, which was followed by BARI Chola-3. There was a significant difference of grain yield and straw yield on combined effect. .BARI Chola-5 produced higher yield in the priming level of 4 hours, 8 hours and control due to its higher plant population. But only BARI Chola-8 produced higher yield (1.24 t/ha) in 12 hours priming level due to its higher number of plant population.

Conclusion

From the above results discussion it was found that BARI Chola-5 gave better performance at 8 hours priming level and BARI Chola-8 gave better performance at 12 hours priming level due to its bigger seed size. The experiment should be continued for another year to observe the year variation.

Table 1. Interaction effect of priming level and varieties on yield and yield attributes of Chickpea at
FSRD site, Chabbishnagor, Rajshahi during 2002-03

Priming level	Variety	Plant pop ^{n/} m ⁻²	Plant height (cm)	Pods plant ⁻¹	Seeds pod ⁻¹	1000- seed wt (gm)	Seed yield (t/ha)	Straw yield (t/ha)
P ₁	BARI Chola-2	18.33	26.53	35.40	1.23	103.10	0.82	1.64
(Control)	BARI Chola-3	23.33	25.73	36.66	1.13	172.50	1.08	2.01
	BARI Chola-5	25.33	29.03	39.33	1.20	112.82	1.20	1.99
	BARI Chola-8	24.33	26.73	38.90	1.33	218.50	0.97	1.86
P ₂	BARI Chola-2	19.33	34.46	32.66	1.20	110.70	0.88	1.90
(4 hours)	BARI Chola-3	24.00	35.66	32.66	1.26	167.71	1.05	2.00
	BARI Chola-5	27.33	30.46	34.80	1.16	127.00	1.26	2.00
	BARI Chola-8	26.00	33.86	33.53	1.17	212.30	1.15	2.21
P ₃	BARI Chola-2	19.66	24.90	31.80	1.23	120.00	0.92	1.79
(8 hours)	BARI Chola-3	24.30	25.83	34.30	1.36	171.32	1.21	2.11
	BARI Chola-5	28.00	24.26	37.03	1.30	122.10	1.29	2.17
	BARI Chola-8	26.00	27.06	35.53	1.30	220.50	1.08	2.02
P_4	BARI Chola-2	19.00	29.60	31.00	1.13	120.00	0.85	1.81
(12 hours)	BARI Chola-3	2266	28.66	33.50	1.12	181.42	1.01	1.98
	BARI Chola-5	26.33	27.86	35.40	1.20	121.30	1.13	1.96
	BARI Chola-8	28.33	27.87	32.70	1.20	220.54	1.24	2.25
LSD (0.05)		3.21	NS	4.102	NS	5.51	0.14	0.23
CV (%)		8.11	5.53	6.49	7.53	5.12	7.45	8.57

ALTERNATIVE RAINFED RABI CROPS TO CHICKPEA FOR THE HIGH BARIND TRACT

Abstract

An experiment was conducted at FSRD site, Chabbishnagar and MLT site, Nachole during Rabi season, 2002–2003. In this study, different rabi crops viz. Chickpea (BARI Chola3 and 5), Mustard (BARI Sharisa 9, 10, 11, Daulat and local), linseed, sunflower safflower, nizer, wheat, barley, cheena, lathyrus, & coriander were evaluated for selecting them as alternative crop (s) of chickpea under rainfed situations. Among the tested crops, chickpea was the best under rainfed conditions in both locations and the other potential and alternative rainfed Rabi crops may be linseed, barley and coriander for both location.

Introduction

Chickpea (*Cicer arietiunum* L.) is the third most important pulse crop in Bangladesh. It is one of the best grain legumes for human and animal consumption. It contributes about 20% of the total pulse. It is normally cultivated in the winter season on conserved soil moisture. The yield of chickpea is probably most unstable among pulses due to its more sensitivity to micro-environment conditions. Continued cropping of chickpea on the same land leads to build up of soil-borne diseases of chickpea, particularly Fusarium wilt and collar rot (*Sclerotium rolfsii*) and consequent yield decline. The particular advantage of Chickpea is being able to grow on residual soil moisture in a post-rainy season because it has deep rooting behavior. It is possible to identify other crops (barley, linseed, coriander, lathyrus & millet) with similar characteristics and that are adapted to the environment of the rabi season to the High Barind Tract (HBT). It is, therefore, intended to evaluate the yield performance and profitability of a range of possible alternative rainfed crops to chickpea at several locations across the HBT.

Materials and Methods

The experiment was conducted at FSRD site, Chabbishnagar, Godagari, Rajshahi (Southern HBT) and MLT site, Nachole, Nawabgonj (Central HBT) during Rabi 2002-2003. The tested crops were Chickpea (Var. BARI Chola-5), mustard (Var. Local, Daulat, BARI Sharisha-9, 10 & 11), linseed (Var. local), barley (BARI barley-2), wheat (Var. kanchan), coriander (Var. local), safflower (Var. local), sunflower (Var. kironi), nizer (Var. local) & Cheena (Var. tusher) at FSRD Site, Chabbishnagor and Chickpea (Var. BARI Chola-3 & 5), mustard (Var. Local), linseed (Var. local), barley (BARI barley-2), wheat (Var. kanchan), coriander (Var. local), safflower (Var. local), sunflower (Var. kironi), lathyrus (Var. local), lentil (Var. BARI mosur-4) & Cheena (Var. tusher) at MLT Site, Nachole, Nawabganj. The experimental site was high land of silty loam to silty clay loam soils, belonging to Amnura series of gray terrace soil (Agro-ecological zone # 26). The experiment was laid out in a randomized complete block design with 3 dispersed replication at each location. The unit plot size was 5m x 6m. The seeds were sown in hand broadcast followed by ploughing with power tiller and laddering. Seeds were sown on 15-20 November 2002 at FSRD site, Chabbishnagor and 16-18 November 2002 at MLT site, Nachole, Nawabgonj. The seed rate was maintained 50 kg/ha for chickpea, 40 kg/ha for lentil, 120 kg/ha for barley, 8 kg/ha for mustard, 30 kg/ha for coriander, 30 kg/ha for safflower, 8 kg/ha for linseed, 20 kg/ha for cheena (proso millets), 120 kg/ha for wheat, 50 kg/ha for lathyrus, 120kg/ha for barley. The land was fertilized at the recommended optimum fertilizer dose of different crops. All fertilizers were applied as basal during final land preparation. No irrigation was applied in the crop field. Hand weeding were done in two times at 21 DAS and 40 DAS, respectively. Malathion was sprayed @ 2 ml/L for Aphids of mustard & Lathyrus and Symbush was sprayed @ 2 ml/L for pod borer of chickpea. The crops were harvested on 10-15 February 2003 for mustard and 25 March to 5 April 2003 for other crops at FSRD site, Chabbishnagor. In Nachole MLT site, the crops were harvested on 10-12 February 2003 for mustard and 20-25 March 2003 for other crops. The seed yield and other related data were recorded and analyzed statistically.

Results and Discussion

Chabbisnagar, FSRD Site : There was a distinct dry season from October to May (data not shown). The dry period affected the yield of wheat, mustard, lathyrus, sunflower, cheena, nizer and safflower. The performance of different rainfed Rabi crops were presented in Table1. The highest plant population m⁻² at one month were recorded in Nizer (184) where as it was 177 at maturity stage. The lowest number 11 was found in sunflower. In case of days to flowering, 75 days were required for nizer, whereas the lowest days to flowering (49) was need for linseed. On the other hand, chickpea and safflower had taken 130 days for maturity while days to maturity for local mustard was 84 days. The highest seed yield 1840 kg/ha was found in barley followed by wheat (1640) and the lowest yield (383) was recorded in Nizer. In case of chickpea equivalent yield, the highest yield (1070 kg/ha) was produced by chickpea followed by linseed (710 kg/ha) and the lowest (202 kg/ha) was recorded in safflower.

Cost and return was calculated and present in Table 3. The highest gross margin (21227 Tk/ha) was obtained form chickpea followed by coriander (12755 Tk/ha) and linseed (12315 Tk/ha). The lowest was found from wheat. The highest BCR (4.26) was given by chickpea followed by linseed (3.06) and coriander (2.59) and the lowest from wheat (1.44).

Nachole MLT site: The seed yield, biomass yield and Chickpea equivalent yield were calculated (Table-2). The highest plant population m⁻² at one month 146 were recorded in wheat whereas it was 142 at maturity stage. The lowest number 34 was found in chickpea at 1 month and it was 32 at maturity stage. In case of days to flowering, the highest 69 days were required for chickpea and safflower whereas the lowest days to flowering (45) was needed for linseed. On the other hand, chickpea and safflower had taken 129 days for maturity while local mustard took 87 days.

The highest seed yield 1560 kg/ha was found in barley followed by wheat (1350 kg/ha) and the lowest yield (410 kg/ha) was recorded from safflower. In case of chickpea equivalent yield, the highest yield (1080 kg/ha) was produced by chickpea cv. BARI Chola 5 followed by chickpea cv. BARI Chola 3 (1030 kg/ha) and the lowest (264 kg/ha) was obtained from lathyrus.

Cost and return was calculated and presented in Table4. The highest gross margin (Tk 21507/ha) was given by chickpea followed by linseed (Tk 10970/ha). The lowest was obtained from lathyrus (Tk 1390 /ha). The highest BCR (4.30 and 4.12) was obtained from chickpea followed by linseed (2.84) and lentil (2.46) and the lowest from lathyrus (1.24).

Conclusion

Considering seed yield as well as cost and return analyses of different crops, Chickpea was found to be best crop under rainfed conditions in both the locations of HBT. Beside chickpea other potential rainfed crop may be linseed, barley and coriander in High Barind Tract. The experiment should be continued for the second year for conclusion.

Farmers reaction

Farmers of both sites showed interest to cultivate barley, linseed and coriander for rotating with chickpea. However, farmers of Nachole keen interest to show the performance of lentil (as lentil grew in some pockets). They opined that in all cases market price of the products and seed availability would be the deciding factors.

Name of crops	Plant pop ⁿ at 1 month (no)	Plant pop ⁿ at maturity (no)	Days to flowering (no.)	Days to maturity (no.)	Seed yield (kg/ha)	Chickpea equivalent yield (kg/ha)	Biomass yield (kg/ha)
Pulse crop							
Chickpea							
BARI Chola-5	42	39	73	130	1070	1070	1470
Oil crop							
Mustard							
BARI sharisa 9	75	73	60	85	533	384	1440
BARI sharisa 10	70	65	60	87	636	458	1850
BARI Sharisa 11	90	84	70	95	620	446	2080
Daulat	95	89	70	95	570	410	1700
Local	82	76	67	84	490	353	2110
Linseed (Nila)	110	108	49	100	710	710	1170
Sunflower (Kironi)	11	11	65	110	1040	416	5080
Safflower (Local)	51	48	71	130	420	202	2010
Nizer	184	177	75	110	383	230	787
Cereal crop							
Wheat (Kanchan)	156	147	65	117	1640	525	2120
Barley (BARI barley-2)	144	132	68	123	1840	589	2700
Cheena (Tussar)	220	216	61	121	840	253	2560
Spices crop							
Coriander (Local)	145	138	63	120	810	648	1180

Table 1. Performance of different alternative Rabi crops to chickpea for the High Barind Tract, Chabbishnagor during Rabi 2002-03

Table 2. Performance of different alternative Rabi crops to chickpea for the High Barind Tract at Nachole MLT site during Rabi 2002-03

Name of crops	Plant population at 1 month (no.)	Plant population at maturity (no.)	Days to flowering (no.)	Days to maturity (no.)	Seed yield (kg/ha)	Chickpea equivalent yield (kg/ha)	Biomass yield (kg/ha)
Oil crops							
Linseed (Local)	107	105	45	92	650	650	1380
Mustard (local)	92	90	68	87	460	331	2140
Safflower (Local)	49	48	69	129	410	164	2140
Cereal crops							
Barley (BARI barly-2)	130	125	65	123	1560	492	2270
Wheat (Kanchan)	146	142	62	114	1350	432	2030
Pulse crops							
Lentil(BARI Mosur-4)	140	102	68	116	790	790	1160
Lathyrus (Local)	107	85	62	127	440	264	1360
Chickpea (BARI Chola-5)	43	41	69	128	1080	1080	2030
Chickpea (BARI Chola-3)	34	32	70	129	1030	1030	2100
Spices crops							
Coriander (Local)	110	102	60	124	680	544	1420

Name of arous	TVC(1	[k/ha)	GR(T	k/ha)	GM(T	k/ha)	E	BCR
Name of crops	L ₁	L ₂	L ₁	L ₂	L ₁	L ₂	L ₁	L ₂
Pulse crops								
Chickpea (BARI Chola-5	6508	6508	27735	28015	21227	21307	4.26	4.30
Chickpea BARI Chola 3	-	6508	-	26800	-	20292	-	4.12
Lentil (BARI Masur-4)	-	6780	-	17930	-	10950	-	2.46
Lathyrus (local)	-	5840	-	7230	-	1390	-	1.24
Oil crops								
Mustard								
BARI sharisa 9	7850	-	9594	-	1744	-	1.22	-
BARI sharisa 10	8200	-	11448	-	3248	-	1.40	-
BARI Sharisa 11	8550	-	11160	-	2610	-	1.31	-
Daulat	8000	-	10260	-	2260	-	1.28	-
Llocal	7605	7605	9930	11220	2325	3605	1.31	1.48
Linseed (Nila)	5970	5970	18285	16940	12315	10570	3.06	2.84
Sunflower	8160	-	10400	-	2240	-	1.27	-
Safflower (Local)	4030	4030	5735	5490	1705	1480	1.42	1.36
Nizer	3995	-	5745	-	1750	-	1.44	-
Cereal crops								
Wheat (Kanchan)	8060	8060	9622	11815	1562	3755	1.19	1.47
Barley (BARI barley-2)	8040	8040	19750	16735	11710	8695	2.46	2.08
Cheena	5740	-	7355	-	1615	-	1.28	-
Coriander (Local)	8015	8015	20760	17560	12755	9545	2.59	2.19
L ₁ = Chabisnagar	TVC = Total variab	ole cost GR	= Gross retu	ırn				

Table 3. Cost and return analysis of different alternative Rabi crops to chickpea for the High 2002-03

 L_1 = Chabisnaga L_2 = Nachole

BCR = Benefit cost ratio

Market price of seed/ grain:

Chickpea = Tk. 25 kg⁻¹ Mustard = Tk. 18 kg⁻¹ Wheat = Tk. 8 kg⁻¹ Linseed = Tk. 25 kg⁻¹ Barley = Tk. 11 kg⁻¹ Sunflower = Tk. 10 kg⁻¹ Safflower = Tk. 14 kg⁻¹ Barley = Tk. 11 kg⁻¹ Nizer = Tk. 15 kg⁻¹ China = Tk. 9 kg⁻¹ Coriander = Tk.25 kg⁻¹

GM = Gross margin

IDENTIFICATION OF FACTORS LIMITING THE YIELD OF CHICKPEA

Abstract

A study was conducted at FSRD site, Chabbishnagar, Rajshahi during 2001-2002 to determine the factors limiting the high yield of chickpea in order to identify the causes of yield gap between farmers field and research. In this study 12 treatments combinations were used following principle of omission of a single factor from a set of optimum packages of practices. On an average results showed the highest yield was obtained from seed sowing on 1-7 November combined with seed rate 40 kg ha⁻¹ (broadcast), 20 kg P_2O_5 ha⁻¹ and disease & pest control as and when necessary.

Introduction

Chickpea occupies a unique position in the world agriculture by virtue of its high seed protein content and capacity to restore soil fertility through symbiotic nitrogen fixation. Chickpea ranks fifth in terms of acreage and production of pulses in Bangladesh. However, the potential yield of chickpea is 2 t/ha in Bangladesh if the full package of production is followed. But there is a reduction of seed yield at farmer's field. Some of the causes of low yields were related with environmental conditions and better agronomic practices. Therefore, this study will be taken to identify the factors limiting the high yield of chickpea following the principle of omission of a single factor from a set of optimum package of practices. Therefore, the experiment was undertaken to find out the yield gap between farmer's field and research station.

Materials and Methods

The experiment was conducted at FSRD site, chabbishnagar, Rajshahi during 2001-02 and 2002-03. RCB design with 3 replications was followed in the study. Treatment combinations of the study were:-

T₁= Complete package (CP): Sowing seed on 1-7 November for Barind + recommended variety (var. BARI Chola-5 + recommended seed rate 40 kg/ha (line sowing 30 cm x 5cm) + seed treatment with 3 g. Vitavax kg/ha seed + fertilizers @ 20 kg N, 40 kg P₂0₅, 30 kg K₂0, 20 kg S and I kg B/ha + disease and insect control (pre-sowing irrigation for germination if needed), T₂ = CP but sowing seeds on 25-30 November for Barind, T₃ = CP omission of chemical fertilizers, T₄ = CP with cowdung @ 5 t/ha but omission of chemical fertilizer, T₅ = CP with inoculum instead of N fertilizer (only N fertilizer omission), T₆ = CP with seed rate @ 30 kg/ha (instead of 40-45 kg/ha), T₇ = CP omission of seed treatment by Vitavax, T₈ = CP omission of disease and insect control, T₉ = Farmers practices (FP): Sowing seeds on 1-7 November + seed rate 40 kg/ha (Broadcast) + fertilizer 20 kg P₂0₅ + disease and insect control, T₁₀= FP omission of disease and insect control, T₁₁= CP with seed soaking for 8 hrs in waterlogged conditions before sowing (sowing time like T₁), T₁₂= CP with seed soaking for late sowing (sowing time like T₂).

But in second year (2002-03) following treatment combinations were selected on the basis of first year performance which were; T_1 , T_2 , T_3 , T_5 , T_7 , T_9 and T_{11} .

Seed treatment, sowing method of seed, seed rate, sowing time of seed, fertilizer dose, disease and pest control in the study were followed as per treatment. All fertilizers were used as basal before final land preparation. The unit plot size was 3m x 4m. The crops were harvested on 21 March 2002 and 15 April 2003. Data on yield and yield attributes were collected and analyzed statistically.

Results and Discussion

Plant height, pods/plant, seeds/pod, 100 seed weight, seed yields were significantly affected by different treatment but plant/m² was use unaffected (Table 1). Treatment T₆ showed higher no. of pods/plant but statistically at par to treatment T₁, T₄ and T₅. Seed/pod showed the highest but at par to all treatment except treatment T₅ & T₇. Higher seed yield was recorded from treatment T₉ but

statistically identical to T_1 , T_3 , T_5 & T_7 . On an average higher seed yield was recorded from treatment T_9 i.e. farm practice sowing seeds on 7-11 November, 40 kg seeds/ha, fertilizer 20 kg P_2O_5 and disease insect control.

	Plant		Pods/	Seeds/	100 - seed	Straw	Seed yie	eld (t/ha)
Treatment	height (cm)	Plant/ m ²	plant	pod	wt (g)	yield (t/ha)	2002-03	2001-02
T ₁	34.67a	37.33	39a	1.87a	12.72ab	1.66a	1.35a	1.16ab
T_2	27.53c	31.33	27b	1.60ab	12.06abc	0.98b	0.83b	0.63c
T ₃	30.47bc	35.67	27b	1.60ab	11.0c	1.32ab	1.28a	1.0a-c
T_4	-	-	-	-	-	-	-	0.86a-c
T ₅	33.87ab	32.67	38a	1.47ab	11.60а-с	1.43ab	1.22a	1.16ab
T_6	-	-	-	-	-	-	-	0.98a-c
T ₇	29.65c	32.67	37a	1.33b	11.27c	1.33ab	1.23a	0.97а-с
T_8	-	-	-	-	-	-	-	0.68c
T ₉	34.48a	38.67	39a	1.83a	13.05a	1.60a	1.44a	1.25a
T ₁₀	-	-	-	-	-	-	-	0.72bc
T ₁₁	29.93c	32.0	29b	1.33b	12.33а-с	1002b	0.90b	1.0a-c
T ₁₂	-	-	-	-	-	-	-	0.65c
LSD(0.05)	3.61	NS	6.85	0.39	1.32	0.47	0.26	0.40
CV(%)	6.44	10.05	11.47	13.79	6.18	19.74	12.16	26.43

Table 1. Yield and yield attributes of chickpea as affected by different factors (Barind, 2002-03)

STUDY ON THE SEED ENRICHMENT OF MUSTARD WITH BORON TO MINIMIZE BORON DEFICIENCY IN THE SOIL

Abstract

The study was conducted at FSRD site, Chabbishnagar, Rajshahi during rabi season 2002-03 with the objective to get boron enriched seeds which can be grown in boron deficient soil without boron application The experiment involved 5 levels of boron viz 3 levels of foliar spray @ 50, 100 and 200 mg/litre, soil application @ 1.00 kg/ha and control. Seed yield and yield attributes varied significantly among different levels of boron. The highest seed yield (1.52 t /ha) was obtained from foliar spray of boron @ 200 mg/litre due to combined effects of the highest number of effective siliqua /plant, the lowest number of sterile siliqua/plant, the highest number of seeds/siliqua and the heaviest seed weight. No application of boron gave the lowest seed yield (0.96 t/ha).

Introduction

Mustard is one of the major oil crops in Bangladesh. Bangladesh imported mustard seeds 100,890 metric tons with about Tk.127 crore in the year 1997. But seed yield is very low compared to other mustard growing countries of the world. The seed yield of mustard is greatly influenced by boron (B) particularly where soil is B deficient. The soil analysis revealed that the soil of High Barind area contains trace amount (0.14-0.33 mg/g soil) of boron. Sterility in Mustard is an important constraint for low yield due to boron deficiency. Experimental reports suggest that application of boron has significant effect in reducing sterility. Boron also essential for bearing fruits. Farmers generally do not use boron in the field .Due to deficiency of Boron plant growth is stunted and leaves become curling. Foliar application of Boron is beneficial for quick recovery of the crop. With this mind, the experiment was undertaken to find out the effect of seed environment of mustard with born.

Materials and Methods

The trial was conducted at FSRD site, Chabbishnagar, Rajshahi during rabi season in 2002-03. The experiment was laid out in a randomized complete block design with four replications. The unit plot size was 5m x 4 m. The seeds (8 kg ha⁻¹) were sown in 30cm row spacing with continuous sowing. The seeds were sown on 7 November 2002. The test variety was BARI sharisa8 (*Brassica napus*). Nitrogen, phosphorus, potassium and sulphur were applied as basal during final land preparation at the rate of 120-35-60-30 kg/ha in the form of urea, Triple super phosphate, Muriate of potash and Zypsum, respectively. The treatment combinations of the study were :

 T_1 = Foliar spray of Boron @ 50 ppm i.e. 50mg/litre T_2 = Foliar spray of Boron @ 100 ppm i.e. 100mg/litre T_3 = Foliar spray of Boron @ 200 ppm i.e. 200mg/litre T_4 = Soil application of Boron @ 1.00 kg/ha T_5 = Control

Spray was done 3-5 days before initiation of flowering. The crop was harvested on 8 February 2002. Data were collected on different yield components and yield, analyzed statistically and the differences between treatment means were evaluated by LSD test.

Results and discussion

Significant variation was observed in yield and yield attributes affected by different level of boron application except plant height, plant/m² and biomass yield (Table 1). Higher number of effective siliqua /plant was found in T_3 which was statistically identical to T_4 and T_2 . The lowest number of siliqua/plant was obtained from T_5 which was identical to T_1 . On the other hand, the highest number

of sterile siliqua was observed in T_5 and the lowest in the treatment T_3 . Treatment T_3 , T_4 & T_2 showed similar number of seed/siliqua & higher than other treatment. Similar trend was noted in case of seed weight. Higher seed yield was recorded from treatment T_3 but statistically at par to T_4 treatment.

From one year result it showed that boron fertilizer may be applied 200 mg/litre as foliar spray for higher yield of mustard. The experiment need another year trial for confirmation.

Treatment	Plant height (cm.)	Plant population /m ² (No.)	Effective siliqua/ plant (No.)	Sterile siliqua /plant (No.)	Seed/ siliqua (No.)	1000 seed wt. (g)	Seed yield (t/ha)	Biomass yield (t/ha)
T_1	98.03	57.50	72.48	7.60	16.93	2.35	1.03	3.03
T_2	101.93	58.71	86.90	6.85	20.07	3.06	1.17	3.41
T_3	102.23	59.92	92.52	5.45	20.85	3.11	1.52	3.57
T_4	103.33	60.36	92.40	6.90	20.52	3.11	1.42	3.26
T ₅	96.18	50.96	69.12	10.38	13.97	2.13	0.96	3.16
LSD(.05)	NS	NS	8.58	1.61	2.92	0.46	0.304	NS
CV (%)	4.10	8.37	6.74	14.08	10.28	10.78	16.13	14.08

Table 1. Effect of boron application on the yield and yield contributing characters of mustard, HBT, Rajshahi, 2002-03

EFFECT OF SOWING TIME ON THE YIELD AND YIELD ATTRIBUTES OF BARLEY IN HIGH BARIND TRACT

Abstract

The experiment was conducted in farmer's field at Chabbishnagar, Godagari, Rajshahi during rabi season of 2001-2002 and 2002-2003 to find out the appropriate time of sowing and suitable variety of barley. Three sowing dates (30 November, 15 December and 30 December) and three barley varieties (BARI barley 1, BARI barley 2 and Local) were included in the study. In general grain and straw yields increased with early sowing (30 November.) for all the three varieties in both the years. The results showed that BARI barley1x November 30 sowing gave the highest grain yield, however it was at par with BARI barley-2 x November 30 sowing and BARI barley1 x December 15 sowing. Hence BARI barley1 could be sown within the range of November 15 to December 15, while BARI barley2 would be planted within November 15.

Introduction

A vast area of High Barind Tract remains fallow after harvesting of T.aman due to lack of soil moisture. Organic matter and essential fertilizer elements are below under critical level. The Barind farmers have already started chickpea cultivation in such type of land. Scientist observation report showed that, Chickpea yield could be deteriorated if the same land is continuously used for 3 years or more and disease infestation specially wilt outbreak would probably be more. So, alternative crop is needed for crop rotation of chickpea field. Barley may be one of the alternative crop for chickpea As, barley is also a deep rooted crop (105cm penetration into soil) like chickpea. However, time of planting might has an important role for getting a reasonable yield. Therefore, it is pertinent to study the effect of sowing time on the performance of barley varieties in High Barind Tract area.

Materials and Methods

The experiment was carried out under rainfed condition at FSRD site Chabbishnagar, Rajshahi during Rabi season 2001-2002 and 2002-2003. The soil belongs to Amnura series having silty clay loam texture. The land was prepared by two ploughing and cross ploughing followed by laddering. At the time of final land preparation, fertilizers were applied at the rate of 85 - 25 - 45 kg NPK ha⁻¹ in the form of urea, TSP, MP respectively, as basal dose. The treatments comprised of three different sowing time (i.e. $S_1=30$ November, $S_2=15$ December and $S_3=30$ December) and three barley varieties (i.e. V_1 =BARI barley 1, V_2 =BARI barley 2 and V_3 =local). Seeds were sown @ 120 kg ha⁻¹ in lines at 20cm with continuous sowing. The experiment was laid out in a factorial randomized complete block design (2 factor experiment) with three replications. The unit plot size was 4m x 5m. Intercultural operations like weeding etc. were done as and when necessary. The crops were harvested at maturity stage. The data were collected on different yield components and yield and analyzed statistically.

Results and Discussion

Grains/spike, grain yield and straw yield were significantly influenced by sowing date and variety but plant height and plant/m² and grain weight were statistically at par. Grains/spike decreased with the advancement of days from 30 November to 30 December. Grain yield showed the highest from 30 November sowing with BARI barley 1 but statistically identical to 15 December and 30 November sowing of BARI barley 2. There was trend to decrease yield from 15 December sowing to onward and the lowest yield from 30 December with local variety. Similar trend was followed in 2001-02. Significantly the highest straw yield was recorded from 30 November sowing of BARI barley-1 variety. On an average higher grain yield was obtained from 30 November sowing with variety BARI barley-1.

Conclusion

From above result it may be concluded that BARI barley 1 gave superior yield when sown earlier (30 November) and it also produced good yield up to 15 December sowing while BARI barley-2 gave good yield only up to November 30 sowing.

Treatment con	mbination	Plant	Plant	Grains	1000-	Grain yiel	ld (t ha ⁻¹)	Straw
Sowing time	Variety	height (cm)	population (no.m- ²)	spike ⁻¹ (no.)	grain wt.(g)	2002-03	2001-02	yield (t/ha)
	V_1	84.67	167.66	41.20a	37.89	2.41a	2.68a	4.25a
\mathbf{S}_1	V_2	77.20	179.67	40.46a	38.25	2.22ab	2.61ab	3.59bc
	V_3	79.87	174.33	39.04a	35.25	1.75cd	2.20c	3.55d
	V_1	80.20	171.67	38.95a	35.57	2.29a	2.50ab	3.98b
S_2	V_2	85.23	218.00	39.25a	36.95	1.98bc	2.45b	3.94bc
	V_3	81.86	184.67	38.00ab	35.92	1.65d	1.87d	3.68c
	V_1	81.73	190.33	38.73a	36.69	1.62d	1.75d	3.75d
S_3	V_2	83.67	176.67	35.87ab	35.99	1.50d	1.83d	3.60d
	V_3	79.27	164.00	32.29a	33.68	1.22c	1.29e	3.21c
CV (%)		6.74	13.00	8.43	7.25	5.75	5.35	3.21

Table 1. Interaction effect of different sowing time and varieties on yield and yield components of barley during Rabi 2002-03

(Hill Farming)

ADAPTIVE TRIAL OF DIFFERENT NEW VARIETIES OF POTATO IN HILLY AREAS AT BANDARBAN

Abstract

An adaptive trial of different 8 varieties/lines of potato viz.: Raja, Heera, Deera, Diamont, Cardinal, BARITPS-1, 364/67 and Local one was carried out in hill valleys at Bandarban during rabi season 2002-03. Among these varieties, Heera produced the highest yield of 20.18 t/ha followed by Raja. The gross margin (Tk. 95109/ha) and BCR (2.43) were the highest from variety Heera. Comparatively the yield (16 t/ha) performance of local variety was also good.

Introduction

Potato is widely cultivated throughout the year. It is an important vegetable crop in this area. But the area of this crop is limited due to abundant of hill. In Bandarban district about 2308 acres of land under potato cultivation with national average yield 13.8 t/ha. Maximum farmers are cultivated local variety called Dohajhari variety. It has an opportunity to increase per hectare yield of potato by introducing high yielding variety and scientific management to the farmers level. So, an adaptive trial of different new varieties of potato is undertaken at hilly areas of Bandarban.

Materials and Method

The experiment was conducted at hill valley at Bandarban during rabi season 2002-03. Six varieties (Raja, Heera, Dheera, Diamont, Cardinal, BARI TPS-1) and one line (364/97) and local was included. The design was randomized complete block design with two replications. The unit plot size was 4 x 3.3 m with spacing 40 x 25 cm. The fertilizer dose was 150-30-120 NPK kg/ha. The experiment was sown from 18 November- 4 December 2002 and harvested 18 February- 1 March 2003.

Results and Discussion:

Screening of different varieties/lines of potato was carried out at hill valleys in Bandarban Sadar during 2002-03. The results revealed that the variety of Heera produced higher yield of 20.18 t/ha (Table 1). Other variety of potato viz. Dheera gave 15.21, Raja,18.96, Diamont,12.48, cardinal, 14.38, BARI TPS-1,15.67, line 364/67,10.96 and local, 16.0 t/ha. The gross margin was found the highest Tk.95109/ha for Heera and the lowest was Tk. 21349/ha for the line of 364/67. The Benefit Cost Ratio was found the highest 2.43 for Heera and lowest 1.32 for the line of 364/67 (Table1). It has been observed that yield of all variety was comparatively lower than on-station research result due to late sowing (4.12.03) and prevalent of early blight disease. From this trial it is observed that potato cultivation can be possible for this limited area. If it is possible to cultivate in the early November the yield might be better than the observed yield trial. Comparatively the yield performance of local variety was also good. So, it has an opportunity to develop local variety due to farmer preference. The experiment needs to be repeated another year.

Conclusion

Potato could be cultivated in the earliest time than farmers can get additional benefit from their higher yield. Potato seed supplied should be ensuring as the earliest time to the farmers level. Program should be undertaken to develop local variety according to farmer preference.

Farmers reaction

Farmers are very much interested to cultivate high yielding variety of potato but seed is not available there.

Variety/lines	Plant height (cm)	Tuber/ hill (No.)	Tuber yield (t/ha)	Skin colour	TVC (Tk/ha)	GR (Tk/ha)	GM (Tk/ha)	BCR
Raja	19.1	10.5	18.96	R	66331	151680	85349	2.28
Heera	26.3	9.6	20.18	W	66331	161440	95109	2.43
Dheera	36.5	6.2	15.21	W	66331	121680	55349	1.83
Diamont	21	8.2	12.48	W	66331	99840	33509	1.50
Cardinal	25.8	7.7	14.38	R	66331	115040	48709	1.73
BARI TPS-1	25	5.9	15.67	W	66331	125360	59029	1.88
364/67	43.5	15.1	10.96	W	66331	87680	21349	1.32
Local	35.5	16.96	16.00	R	66331	128000	61669	1.92

Table1. Screening trial of 8 varieties/lines of potato in hill valleys in Bandarban, 2002-03

TVC= Total variable cost, GR= Gross Return, GM = Gross Margin (GR-TVC), R= Red & W= White

Price of potato: Tk. 8.00/kg

ON-FARM EVALUATION OF SWEET POTATO VARIETIES DEVELOPED BY BARI AT HILL VALLEYS IN BANDARBAN

Abstract

On-farm evaluation trial of sweet potato varieties viz. Kamalasunduri, BARI SP-4 and Local were carried out in hill valleys in Bandarban Sadar during 2002-03. The experiment revealed that Kamalasundari gave the highest yield 31.03 t/ha followed by BARI SP-4, 22.50 ton/ha and local 19.11 t/ha. According to the profitability, the same trend was found to net benefit Tk.91,132/ha for Kamalasundari , Tk 52747/ha and Tk 28501/ha for local variety. Benefit Cost Ratio was found 2.9, 2.0 and 1.7 for Kamalasundari, BARI SP-4 and Local, respectively.

Introduction

In Bandarban district, sweet potato grows well in hill valleys. About 385 acres area covered by sweet potato with average national yield 12.8 ton/ha in Bandarban district. Farmers are growing local variety. Recently, BARI has developed some new varieties of sweet potato. It is necessary to identify the suitable variety for this area, an adaptive trial has been undertaken with the objective to identify the yield performance of different varieties of sweet potato.

Materials and Methods

The experiment was conducted at Hill valley of Bandarban during 2002-03. Three varieties Kamalasunduri, BARI SP-4 and Local were included in the study. The experiment was carried out in randomized block design with three replications. The unit plot size was 5×2 m with spacing 60×30 m. The fertilizer dose was 119-92-57 kg N-P-K/ha. The crop was sown from 27-28 October, 2002 and harvest 3-7 March, 2003.

Results and Discussion

The result of this trial has been presented in Table1.It was observed from the table that the highest yield (31.03 t/ha) was found from Kamalasundari followed by BARI SP-4 (22.50 t/ha) and local variety (19.11 t/ha). According to local market price (Tk.4.5/kg tuber) the highest net benefit was found Tk.91132/ha from Kamalasundari, followed by Tk.52747/ha for BARI SP-4 and Tk.28501/ha for local variety with Benefit Cost Ratio was found 2.9, 2.0 and 1.77, respectively. Time consumption of boiling were recorded as 19, 23 and 27 minute for Kamalasundari, BARI SP-4, and local, respectively.

Farmer reaction

Farmers are agreed to grow new varieties of sweet potato, but vine are not available there. Farmers are highly appreciated Kamalasundari in respect of higher yield, profitability, colour, softness, minimum time consumption for boiling etc.

Table1. Yield Performance of Sweet potato varieties developed by BARI in Hill Valleys in Bandarban.

Variety	No. of root/plant	Root wt. /plant (kg)	Tuber yield (t/ha)	GR (Tk./ha)	TVC (Tk./ha)	GM (Tk./ha)	BCR
Kamalasundari	6.2	1.512	31.03	139635	48503	91132	2.9
BARI SP-4	3.4	0.693	22.50	101250	48503	52747	2.0
Local	3.0	0.527	19.11	85999	48503	28501	1.77

GR=Gross return, TVC= Total variable cost, GM= Gross margin(GR-TVC), Market price @Tk4.5/kg tuber

ON-FARM ADAPTABILITY TRIAL OF SOME PROMISING RAPE MUSTARD VARIETIES/LINES

Abstract

The experiment was conducted in medium high land at FSRD site of Palima Tangail, Ishan Gopalpur, Faridpur, Golapganj, Sylhet, MLT site Magura, Norail & Kushtia, and ARS, Bogra, during rabi 2001-03 and Joypurhat, Nandigram, Narhatta, Gabtali and Jamalpur during 2002-03 to evaluate the performance of some promising variety/lines of rape mustard seeds under farmer's field condition. From the above result it showed that BARI Sarisha-11 and BARI sharisah-8 at Tangail, BARI Sarisha-7 at Faridpur, BARI Sarisha-11 at Sylhet, BARI Sarisha-8 at Magura, PT-303 at Norail, BARI Sarisha-6 or BARI Sarisha-11 or BARI Sarisha-8 at Kushtia and Ishurdi local at Bogra, Ishurdi local at Joypurhat, Nandigram, BARI sharia-8/7 at Narhatta and BARI Sarisha-8 and Rai-5 at Gabtali is found suitable for mustard but this need further trial for confirmation. The experiment needs to repeat at later four sites.

Introduction

Bangladesh has to import huge amount of vegetable oil and oil seed every year to meet up the deficiency. Mustard is the major oil seed crop in Bangladesh. It covered about 70% of the total oil seed production of Bangladesh. The yield of this crop in Bangladesh is found much lower than the other countries due to yield potential of local varieties and its poor management practices. Oil Seed Research Center (ORC) of BARI has developed some advanced promising varieties/lines of rape-mustard which possess the high yield and less diseases susceptible and high oil content (44%). Hence, the study was undertaken to evaluate the performance of new line/variety under farmer's field condition.

Materials and Methods

The trial was conducted at FSRD site, Palima, Tangail, Ishan Gopalpur, Faridpur, Golapganj, Sylhet, MLT site, Norail, Magura, Kushtia and ARS, Bogra during rabi 2001-03 and Joypurhat, Nandigram, Narhatta, Gabtali and Jamalpur during 2002-03 in farmer's field. The design of the experiment was RCBD with three replications. Tested cultivars were BARI Sarisha-6, BARI Sarisha-7, BARI Sarisha-8, BARI Sarisha-9 BARI Sarisha-10, Jamalpur-1, Ishurdi local, Rai-5, PT-303, TS-72, SS-75, Daulat and Tori-7. Plot size was 6 m × 4 m. Seeds were sown on 11 Nov., 5 Nov., 7 Nov., 17 Nov. & 5 Nov. at Faridpur, Sylhet, Jessore (2 sites) and Kushtia, respectively with a spacing of 30 cm × 6 cm. Fertilizer doses were 120-80-60-40-4-2 kg NPKSZnB/ha. All fertilizers were applied as basal except urea. Urea was applied as top dress on 20 and 45 days after sowing (DAS), respectively. One weeding cum thinning was done on18 DAS. The crops were harvested variety wise during January 26 to Febuary12, 29 Jan. to 12 Feb., 25 March at Tangail, Faridpur and Sylhet. The data on different plant characters and yield components were collected from 10 plants selected at random in each plot and yield was recorded plot wise. Data were analyzed statistically using MSTATC package.

FSRD site, Palima, Tangail

Results and Discussion

Growth duration, plant/m², plant height, yield and yield attributes were significantly influenced by different variety/line. The result showed that short duration variety identified was Tori-7, PT-303, TS-72, BARI Sarisha-9 & BARI Sarisha-12 medium duration was BARI Sarisha-6, Daulat and BARI Sarisha-8 and rest were BARI Sarisha-10, BARI Sarisha-7, SS-75, Jamalpur-1, Ishurdi local, Rai-5 and Daulat, respectively. Significantly the highest plant height was observed from Rai-5 whereas shorter height was shown in variety BARI Sarisha-7 and Tori-7. The variety TS-72 showed significantly the highest number of branch/plant. Number of pod/plant revealed higher from variety Rai-5 which was statistically differ from other variety. The variety TS-72 and SS-75 showed the highest number of seeds/pod, which was significantly different from other variety/line. BARI Sarisha-11, showed significantly the highest grain weight and bolder in size than the other variety. Among the

varieties, BARI Sarisha-11, Daulat & BARI Sarisha-8 revealed statistically similar grain yield and showed higher yield than other variety. The variety SS-75, Tori-7 and BARI Sarisha-6 showed similar and the lowest grain yield. On an average the highest grain yield was obtained from BARI Sarisha-11 followed BARI Sarisha-8 but less duration was taken in later one.

FSRD site, Ishan Gopalpur, Faridpur

Plants/m², siliqua/plant, seeds/pod, 1000-seed wt. and seed yields were significantly influenced by different groups of mustard (Table 2). Among the duration shortest duration from variety Tori-7 which close to TS-72. Higher siliqua/plant was obtained from Daulat followed by BARI Sarisha 11. The lowest siliqua was recorded from Sonali. Significantly the highest seeds/pod was obtained from SS-75. Higher seed weight revealed from BARI Sarisha-12. The variety BARI Sarisha-7 showed significantly the highest grain yield among the variety/line which took 94 days. Among the short duration variety, TS-72 followed Tori-7 showed higher yield.

FSRD site, Golapganj, Sylhet

Plant height, days to maturity, yield attributes, and seed weights were significantly influenced by different varieties. The highest plant height was recorded from Rai-5 which was followed by BARI Sarisha –11 (Table 3) and the lowest plant height from Tori-7. The highest siliqua/plant was obtained from BARI Sarisha-11 followed by BARI Sarisha-10. Significantly the highest seeds/siliqua was recorded from BARI Sarisha-9. BARI Sarisha-11, revealed higher seed weight. Significantly the highest seed yield (1229 kg/ha) was obtained from BARI Sarisha which mature 96 days. Though Tori-7 much earlier (74 days) but yield was much less than other variety. Though BARI Sarisha-6 showed the highest yield in 2001-02 but this variety was not included in 2002-03. On an average BARI Sarisha-11, 10 & 9 were statistically similar yield.

MLT Site, Magura

Different variety showed significant influenced by plant height, yield attributes and yield (Table 4). The highest plant height was obtained from Rai-5 followed by Daulat and shortest from BARI Tori-7. The variety Jamalpur-1 showed the highest pods/plant followed by Daulat & Rai-5 and the lowest from S-75. The highest seeds/pod was recorded from BARI Sarisha-9 & SS-75. The variety BARI Sarisha-8 revealed significantly the highest yield (1.87 t/ha).

MLT site, Norail, Jessore

All the characters were significantly influenced by different group of varieties. The highest plant height was recorded from Daulat followed by Rai-5 and ISD local and shortest from BARI Sarisha-7. The highest seeds/siliqua was obtained from variety SS-75 & BARI Sarisha-8. Higher pods/plant was recorded from BARI Sarisha-6 followed by PT 303 & BARI Sarisha-7. Among the varieties higher seed yield was obtained from PT-303 followed by all variety & line except Rai-5 (Table 5).

MLT site, Kushtia

All the characters were significantly influenced by different variety except days to maturity (Table 6). Significant the highest plant height from Jamalpur-1 (BARI Sarisha-11) whereas shortest from Tori-7 followed by BARI Sarisha-9 and BARI Sarisha 12. Higher siliqua/plant was recorded from BARI Sarisha-9 closely followed by BARI Sarisha 6 & 11. But BARI Sarisha-6 showed significantly higher seed/siliqua. The highest seed yield was obtained from BARI Sarisha-6, which was statistically identical to BARI Sarisha-11 and BARI Sarisha-8.

ARS, Bogra

All the characters were significantly affected by different varieties (Table 7). The variety Rai-5 showed the highest plant height and the lowest from BARI Sarisha-7. Significantly the highest pods/plant was recorded from Daulat followed by Rai-5. But seeds/pod showed from SS-75 which
was significantly different from other variety. Similarly the highest seed weight was recorded from SS-75. All the yield contributing character higher from SS-75 but failed to show higher yield due to lower no. of pod/plant. Higher seed yield was recorded from Ishurdi local followed by Jamalpur-1 & Daulat. On an average, the highest seed yield was obtained from Ishurdi local.

MLT site, Joypurhat

Duration, plant the highest, yield and yield attributes were significantly influenced by variety. The highest plant height from Rai-5 which was significantly differs from other variety. The variety Jamalpur local/Ishurdi local showed similar pods/plant & higher than all other variety. The variety SS-75 showed significantly the highest seed weight. Significantly the highest grain yield was obtained from Ishurdi local (Table 8).

MLT site, Nandigram

Duration, plant height, yield and yield attributes were significantly influenced by variety. The variety Rai-5 showed the highest plant the height weight and the lowest from BARI Sarisha-7 (Table 9). The variety Ishurdi local and Jamalpur local showed similar pods/plant. Seeds/pod revealed the highest from BARI Sarisha-7. Significantly the highest seed weight was obtained from BARI Sarisha-7. The highest seed yield was recorded from Ishurdi local followed by BARI Sarisha-8.

MLT site, Narhatta

Different varieties significantly influenced duration, plant height, yield & yield attributes of mustard. The highest plant the highest was recorded from Rai-5 followed by PT - 303 and shortest plant from Tori-7. The highest pod/plant was recorded from BARI Sarisha-10 followed by BARI Sarisha 9 & Rai-5. Significantly the highest seed/pod was obtained from BARI Sarisha-8. The variety BARI Sarisha 8 & 7 was statistically identical in respect of grain weight & higher than other variety. Similar trend was followed in case of grain yield.

MLT site, Gabtali

Duration plant height, yield & yield attributes were significantly differ among varieties. Shortest duration from Tori-7 and longest from Daulat & Jamalpur. The highest pods/plant was recorded from Ishurdi local followed by Jamalpur-1 but seed/pod was the highest from BARI Sarisha-8 followed by BARI Sarisha-6. Significantly the highest seed weight was obtained from SS-75. The variety BARI Sarisha-8 showed the highest grain yield which was closely followed by Rai-5.

Conclusion

From the above result it showed that BARI Sarisha-11 and BARI sharisah-8 at Tangail, BARI Sarisha-7 at Faridpur, BARI Sarisha-11 at Sylhet, BARI Sarisha-8 at Magura, PT-303 at Norail, BARI Sarisha-6 or BARI Sarisha-11 or BARI Sarisha-8 at Kushtia and Ishurdi local at Bogra, Ishurdi local at Joypurhat, Nandigram, BARI sharia-8/7 at Narhatta and BARI Sarisha-8 and Rai-5 at Gabtali is found suitable for mustard but this need further trial for confirmation. The experiment needs to repeat at later four sites.

Variety /Line	Duration (days)	Plant pop ⁿ /m²	Plant ht.(cm)	No. of branch/ plant.	No. of pod/pt.	No. of seeds/ pod	1000- grain wt.(g)	Grain y (t/ha 01-02	rield I) 02-03	Biomass (t/ha)
Brassica campes	tris L									
Tori-7	74h	95.0c	92.7g	1.3e	42.0ghi	10.13ef	2.6g	1.42ab	0.95d	3.48fg
BARI Sarisha-6	84e	93.7cd	112.3de	2.47f	34.20hi	21.27d	3.28d	1.07b	0.95d	3.83def
BARI Sarisha-9	76g	93.7cd	104.6f	5.13b	74.53de	13.13d	2.62f	1.48ab	1.08bc	4.08cde
BARI Sarisha-12	76g	92.7cd	106.5ef	4.47c	78.2d	12.3de	2.52h	1.42ab	1.02cd	3.85de
PT-303								1.36abc		
TS-72	76g	92.3cd	116.0cd	6.13a	56.13fg	25.0a	2.3i	0.97ab	1.13bc	3.73ef
SS-75	82f	100.7a	122.2c	1.8g	28.47 i	25.0a	3.5b	1.69a	0.92d	4.12cd
Brassica juncia L										
BARI Sarisha-10	84e	94.0cd	111.1def	3.47e	138.0d	10.47def	2.65e	1.53ab	1.16b	5.12b
BARI Sarisha-11	104a	96.0bc	147.8a	3.6d	138.9b	9.27f	3.7a	1.43ab	1.29a	5.58a
Rai-5	88b	99.0ab	145.8a	4.6bc	201.2a	10.47def	1.64k	1.19bcd	1.29a	5.22b
Daulat	85d	101.7a	133.6b	2.67f	123.5c	12.80de	2.00j	1.69a	1.31a	5.65a
Brassica napus L										
BARI Sarisha -7	88b	92.7cd	88.53g	4.07cd	45.3gh	17.13c	3.4c	1.05cd	1.10bc	3.32g
BARI Sarisha-8	85c	90.0d	94.13g	3.67de	62.87ef	19.87b	3.41c	1.61a	1.30a	4.29c
CV%	0.18	2.33	3.34	8.46	9.35	9.79	0.01	14.03	5.57	4.56

Table 1. Duration, plant/m², plant height, yield and yield contributing characters of some promising rape mustard varieties/lines (FSRD site, Palima, Tangail during rabi, 2002- 03)

Means followed by same letter is not significantly different at 5% level by DMRT.

Table 2. Yield and yield attributes of rapeseed and mustard varieties tested at FSRD site, Ishan Gopalpur, Faridpur during Rabi 2002-03

Veriety	Duration	No. of	No. of	No. of	1000 seed	Seed yie	eld (kg/ha)
variety	Duration	plants /m2	siliqua/plant	seed/pod	wt. (gm)	2001-02	2002-03
Brassica campesti	ris L.						
Tori-7	73	69.7a	122.7abc	14.3c	2.93de	1040e	1026.7bc
BARI Sarisha-6	97	42.7cde	83.0cd	21.0b	3.77b	1730ab	763.3e
BARI Sarisha -9	95	59.7ab	124.0abc	14.0c	2.53ef	1340d	1093.3bcd
BARI Sarisha -12	95	42.7cde	129.0ab	15.0bc	4.43a	-	846.7cd
TS-72	79	58.7abc	115.0a-d	16.3bc	3.07cd	1420cd	1140bc
SS-75	94	42.7cde	88.0bcd	26.3a	3.57bc	1870a	786.7e
Brassica juncia							
BARI Sarisha -10	96	47.7b-e	138.0a	13.3c	3.60b	740f	1203.3b
BARI Sarisha -11	98	41.7de	145.0a	12.0c	3.00d	-	1036.7be
Rai-5	97	38.3e	108.0a-d	13.3c	3.57bc	950ef	796.7de
Sonali	100	44.0b-e	74.0d	20.7b	2.09f	-	746.7e
Daulat	102	42.0de	160.0a	13.0c	2.47ef	1100e	1143.3bc
Brassica napus L.							
BARI Sarisha –7	93	56.3a-d	90.0bcd	20.3b	3.37bcd	1890a	1556.7a
BARI Sarisha –8	94	64.3a	111.7a-d	17.0bc	3.37bcd	1820a	1116.7bc
CV (%)	-	6.6	19.0	18.8	8.6	9.5	15.7

Variety	Plant height	Days to	Siliqua/ plant	Seeds/ siliqua	1000 seed	Se (I	ed yield ‹g/ha)
valiety	(cm)	maturity	(no.)	(no.)	wi. (g)	2000-01	2002-03
Brassica campestris L.							
Tori-7	74.65	74	48	14.10	2.50	821	785
TS-72	-	-	-	-	-	960	-
SS-75	-	-	-	-	-	1180	-
PT 303	-	-	-	-	-	980	-
BARI Sarisha-6	-	-	-	-	-	1725	-
BARI Sarisha-9	79.40	82	85	15.10	2.71	1195	1035
Brassica juncia L.						960	805
Rai-5	118.6	94	77	11.20	1.92	1020	-
Daulat	-	-	-	-	-	1055	-
BARI Sarisha-10	98.5	90	112	10.20	2.61	1125	1105
BARI Sarisha-11	109.2	96	103	12.10	3.10	1079	1224
Brassica napus L.							
BARI Sarisha-7	-	-	-	-	-	1656	-
BARI Sarisha-8	-	-	-	-	-	1502	-
LSD (.05)	4.88	3.49	15.44	2.88	-	143.7	55.0

Table 3. Yield and yield contributing characters of mustard and rapeseed varieties at FSRD site, Golapganj, Sylhet, 2002-2003

Table 4. Performance of mustard varieties at the MLT site, Magura during 2002-03

Tractmente	Plant	Branch/	Pods/	Sood/pod	1000	Grain yi	eld (t/ha)	Straw
rreatments	(cm)	plant	plant	Seed/pod	(g)	2001-02	2002-03	(t/ha)
Brassica campestri	s L.							
Tori-7	97.40f	4.07ab	108.00de	15.67de	2.90ef	0.83ab	1.01e	2.06f
TS 72	100.30f	4.33a	117.30de	15.67de	2.79h	0.92ab	1.49bc	2.70def
SS 75	122.10d	3.66ab	68.33e	22.67a	4.00a	1.047a	1.73bc	2.70d-f
PT-303	104.30ef	3.80ab	120.30de	16.40cd	2.80gh	0.87ab	1.40cd	2.49ef
BARI Sarisha-6	111.70e	3.87ab	116.30de	19.67b	3.90b	0.74ab	1.51bc	3.00cde
BARI Sarisha -9	100.30f	3.67ab	127.30de	16.33cd	2.67e	1.04a	1.51bc	2.43ef
Brassica juncia L.								
BARI Sarisha-10	-	-	-	-	-	0.91ab	-	-
Rai-5	158.90a	3.07ab	246.30a	12.73ef	2.17j	0.68b	1.43cd	4.04ab
Daulat	157.30ab	3.23ab	251.30a	11.67f	2.27i	0.85ab	1.39cd	4.49a
ISD local	146.60c	3.50ab	239.70ab	12.00f	2.87fg	0.86ab	1.40cd	3.97ab
Jamalpur local	150.40bc	3.13ab	253.30a	11.33f	2.77h	0.69b	1.38cd	4.52a
Brassica napus L.								
BARI Sarisha -7	101.10f	4.00ab	188.00bc	19.00bc	3.37c	1.05a	1.61bc	3.39bcd
BARI Sarisha -8	108.20ef	3.67ab	139.00cd	22.67a	3.97ab	0.87ab	1.87a	3.82abc
CV (%)	3.89	24.48	19.28	10.21	1.81		9.45	15.23

	Plant	Branch/	Pods/		1000	Grain yie	eld (t/ha)	Straw
Treatments	height (cm)	plant	plant	Seed/pod	grain wt. (g)	2001-02	2002-03	yield (t/ha)
Brassica campes	stris L.							
Tori-7	72.20de	2.67cde	72.93a	15.57c	2.70ef	1.03ab	0.72ab	1.98cd
TS 72	76.90d	2.83cde	63.43ab	16.40c	2.80ef	1.35a	0.85a	1.83cd
SS 75	89.40c	3.93b	53.27b	22.60a	3.27bcd	1.24ab	0.61b	1.78d
PT-303	79.57d	3.23c	76.33a	16.00c	3.00de	1.31a	0.73ab	2.21cd
BARI Sarisha-6	101.40b	4.67a	77.37a	18.30b	3.37abcd	1.08ab	0.71ab	3.32abc
BARI Sarisha-9	74.90de	2.77cde	71.43ab	15.27c	2.77ef	1.18ab	0.70ab	2.87bcd
Brassica juncia L								
Daulat	117.80a	2.33ef	66.27bb	13.20de	2.63ef	1.11ab	0.62b	3.97ab
ISD local	110.30a	2.30ef	63.07ab	11.27f	3.47abc	1.16ab	0.59b	4.47a
Jamalpur	114.20a	1.97f	62.30ab	11.53ef	3.60ab	1.12ab	0.58b	4.76a
Rai-5	116.20a	2.53def	71.30ab	13.43d	2.50f	0.94b	0.79ab	3.35abc
Brassica napus l								
BARI Sarisha-7	68.30e	2.97cd	74.13a	19.60b	3.20cd	1.27ab	0.63b	4.00ab
BARI Sarisha-8	74.87de	2.67cde	61.47ab	21.60a	3.70a	1.38a	0.96ab	2.25bcd
CV (%)	5.03	11.26	14.00	6.37	6.87	15.15		25.54

Table 5. Performance of mustard varieties at the MLT site, Norail during 2002-03

Table 6. Yield and yield attributes of different varieties /lines of mustard in Kushtia during 2002-03

	Field	Plant non	Plant	Siliqua/	Seed/	1000 sood	Seed yiel	d (kg/ha)	Stover
Name of variety	duration (days)	/m ²	height (cm)	plant (no.)	Siliqua (no.)	wt. (gm)	2001-02	2002-03	yield (t/ha)
Brassica campestr	is L.								
Tori-7	85	32.0ab	96.08c	114.43a	10.77d	2.70a	1102.7de	1307.7b	2748.0ef
BARI Sarisha-6	100	31.53ab	111.3b	117.72a	27.90a	2.83a	1437.7bc	1519.3a	3458.3cd
BARI Sarisha-9	87	33.33a	97.89c	120.31a	13.07dc	2.53ab	1229.3def	1397.7b	2957.7ef
BARI Sarisha-12	87	34.10a	100.35b	96.83b	11.50cd	2.31b	-	1311.0b	2660.0f
TS-72							1213.3de		
PT-303							1177.7de		
SS-75							1591.0ab		
Brassica juncia L.									
BARI Sarisha-10	102	32.00ab	118.90ab	97.31b	10.93d	2.57ab	1210.3de	1386.7b	3310.0d
ISD Local							1168.7de		
Jamalpur-1							1265.7cd		
BARI Sarisha-11	106	30.60b	130.17a	117.48a	12.27a	2.63ab		1509.3a	4729.3a
Rai-5							1020.7e		
Daulat							1241.3cde		
Brassica napus L.									
BARI Sarisha-7							1629.3ab		
BARI Sarisha-8	98	33.57a	100.35b	105.95ab	16.13b	2.56ab	1652.3a	1504.3a	3576.7c
Jata Rai	108	30.60b	117.91	114.20a	10.6d	2.58ab	1035.6e	1385.7b	4280.7b
CV (%)		4.2	4.5	7.1	7.6	7.5		3.7	3.6
F-test		*	*	*	**	-		**	**

Varieties	Duration of crop (days)	Plant height	Pods/plant (no.)	Seeds/ pod (no.)	1000- grain wt.	Grain yiel 2001-02	d (t/ha) 2002-03	Stover yield
Dura a la comuna a tula l	,	(CM)	()	()	(gm)			(t/na)
Brassica campestris	L.							
Tori-7	88.67 d	89.2ef	55.83f	16.93c	3.52cd	1.073f	0.76d	3.6e
TS-72	88.33d	92.2e	43.43g	16.97c	3.32d	1.157f	0.50e	2.7h
SS-75	79.0f	113.5d	34.03h	28.87a	4.91a	1.350ef	0.58e	3.29f
PT-303	88.33d	86.13f	48.77fg	16.80c	3.65c	1.317f	0.58e	2.98g
BARI Sarisha-6	85.33e	127.9c	94.80e	21.30b	3.91b	1.930cd	0.97c	4.72c
BARI Sarisha-9	87.67d	94.57e	47.93fg	16.90c	2.87ef	1.223f	1.01c	4.02d
Brassica juncia L.								
Jamalpur-1	104.0b	130.9bc	92.83e	14.50d	4.02b	2.35a	1.55ab	3.50ef
BARI Sarisha-10	103.3b	129.0c	115.2bc	15.03cd	2.89ef	1.733cd	1.42b	4.01d
Ishurdi local	109.0a	128.0c	107.4cd	14.04d	3.60c	2.30ab	1.58a	4.09d
Rai-5	104.3b	138.5a	123.0ab	14.37d	3.00e	1.017f	1.41b	3.46ef
Daulat	105.0b	136.1ab	129.5a	16.13cd	2.72f	1.160f	1.52ab	4.85ba
Brassica napus L.								
BARI Sarisha-7	109.7a	76.80g	99.57de	15.20cd	3.65c	2.017bc	0.76d	5.13a
BARI Sarisha-8	95.67c	83.70f	116.2bc	19.20b	3.99b	1.637de	0.81d	5.07ab
F-Test	1.11	3.2	6.26	7.53	3.97	***	-	3.97
CV (%)	*	*	*	*	*	11.44	8.77	*

Table 7. Performance of different characters of mustard varieties at level Barind soil of ARS, OFRD, BARI, Bogra during Rabi 2002-03

Figure(s) followed by different letters in the same column are statistically significant at 0.1% level of probability

Table 8. Mean performance of different characters of 13 Mustard varieties at MLT site Joypurhat, Bogra during 2002-03

Varieties	Duration	Plant	Pod/plant	Seed/pod	1000-seed	Grain yield	Straw yield
Vanotioo	(days)	height (cm)	(no)	(no)	weight (g)	(t/ha)	(t/ha)
Brassica campestris	s L.						
Tori-7	74.17f	87.121	83.30de	14.42e	2.70h	0.72g	1.74e
TS-72	82.50e	86.121	91.77cd	16.00d	3.67b	1.04d	2.15d
SS-75	96.33d	97.23ef	85.08de	29.30a	3.55c	1.49b	3.05b
PT-303	71.17g	92.42gh	95.78c	14.62de	3.24e	0.73fg	1.65e
BARI Sarisha-6	96.83d	105.30cd	87.53cd	19.55c	2.83g	1.16c	2.22d
BARI Sarisha-9	74.50f	95.42fg	85.77с-е	14.78de	3.73b	0.81ef	1.75e
Brassica juncia L.							
Jamalpur-1	103.20ab	114.40b	234.30a	9.98g	3.44d	1.47b	2.90b
BARI Sarisha-10	100.30bc	108.80c	162.20b	10.78fg	2.62ij	1.16c	2.35cd
Ishurdi local	104.70a	116.00b	232.80a	9.38g	2.96f	1.58a	3.30a
Daulat	103.00ab	105.10cd	98.53cd	11.50f	2.15k	0.84e	1.79e
Rai-5	101.70bc	125.40a	84.72de	9.52g	2.57j	0.67g	1.57ef
Brassica napus L.							
BARI Sarisha-7	101.30bc	89.43hi	68.65f	22.52b	2.68hi	0.67g	1.39f
BARI Sarisha-8	99.00cd	101.90de	75.53ef	22.62b	3.80a	1.19c	2.57c
CV (%)	2.73	4.04	8.12	8.28	1.70	6.47	9.10
F-Test	*	*	*	*	*	*	*

Figure (s) followed by different letters in same column are statistically significant at 5% level of probability.

Varieties	Duration (days)	Plant height (cm)	Pod/plant (no)	Seed/pod (no)	1000-seed weight (g)	Grain yield (t/ha)	Straw yield (t/ha)
Brassica campestris	L.		(•)	((0.10.)	(0)
Tori-7	76.83f	90.22fg	53.00fg	12.77cd	2.68d-f	0.892g-l	2.28gh
TS-72	77.50f	93.97e	55.72ef	12.45de	2.79с-е	0.867hi	2.01h
SS-75	94.17d	100.30d	32.20a	19.22b	3.64a	0.705j	2.33gh
PT-303	84.17e	92.83ef	55.43ef	10.15g	2.37gh	0.8381	2.15gh
BARI Sarisha-6	98.73a-c	97.85d	45.45h	13.08c	2.98bc	0.992e-g	3.32de
BARI Sarisha-9	77.50f	105.30c	58.40de	12.10e	2.73d-f	0.8621	2.62fg
Brassica juncia L.							
Jamalpur-1	101.70a	113.30b	81.45a	10.18g	2.75c-f	1.197a-c	3.85b-d
BARI Sarisha-10	98.17a-c	105.20c	74.43b	12.45de	2.56fg	1.063d-f	3.20e
Ishurdi local	100.80ab	114.50b	79.58a	11.10f	2.88b-d	1.250a	4.48a
Daulat	96.50cd	104.70c	57.78de	9.97g	2.26h	0.975f-h	3.12ef
Rai-5	97.17b-d	118.80a	49.97g	12.23e	2.61ef	1.095c-e	3.62с-е
Brassica napus L.							
BARI Sarisha-7	101.30a	87.22g	59.63ed	21.62a	3.53a	1.107b-d	4.15a-c
BARI Sarisha-8	101.80a	93.12ef	61.95c	19.03b	3.04b	1.215ab	4.23ab
CV (%)	3.66	3.07	4.72	2.88	6.94	9.49	15.43
F-Test	*	*	*	*	*	*	*

Table 9. Mean performance of different characters of 13 Mustard varieties at Nandigram MLTs under Bogra during 2002-03

Figure (s) followed by different letters in same column are statistically significant at 5% level of probability.

Table 10. Mean performance of different characters of 13 Mustard varieties at Narhatta MLTs under Bogra during 2002-03

Varieties	Duration	Plant	Pod/plant	Seed/pod	1000-seed	Grain yield	Straw yield
	(days)	height (cm)	(no)	(no)	weight (g)	(t/ha)	(t/ha)
Brassica campesti	ris L.						
Tori-7	84.00d	86.37h	80.43fg	11.01f-h	3.14c-e	0.84h	2.17e
TS-72	84.83d	96.90fg	111.20d-e	12.40e	3.39bc	1.00fg	2.41с-е
SS-75	99.67bc	114.20b	71.73g	12.99de	3.30b-d	1.13d-e	2.63a-c
PT-303	84.83d	98.25a	117.00с-е	11.89e-g	3.39bc	0.95gh	2.38de
BARI Sarisha-6	99.33c	103.10d-f	39.43h	17.42b	3.05de	1.21cd	2.96ab
BARI Sarisha-9	84.33d	105.30с-е	134.90ab	13.75ed	2.91e	1.09ef	2.45b-d
Brassica juncia L.							
Jamalpur-1	102.20a-c	115.10b	123.10b-d	12.14ef	2.91e	1.39b	2.67ab
BARI Sarisha-10	102.80a	115.20b	143.40a	10.68h	2.45f	1.13de	2.38de
Ishurdi local	102.20a-c	112.10bc	126.90bc	10.40h	3.42b	1.37b	2.72a
Daulat	102.00a-c	108.20b-d	107.20e	10.96gh	2.61f	1.32bc	2.58a-d
Rai-5	103.00ab	124.70a	132.10ab	11.98e-g	3.34bc	1.36b	2.55a-d
Brassica napus L.							
BARI Sarisha-7	104.30a	89.28gh	87.38f	14.50bc	4.26a	1.69a	2.65a-c
BARI Sarisha-8	104.20a	99.87ef	69.73g	21.32a	4.34a	1.70a	2.61a-d
CV (%)	3.04	6.52	10.37	7.62	7.06	8.76	8.25
F-Test	*	*	*	*	*	*	*

Figure (s) followed by different letters in same column are statistically significant at 5% level of probability.

Varieties	Duration	Plant	Pod/ plant	Seed/pod	1000-seed	Grain yield	Straw yield
	(days)	height (cm)	(no)	(no)	weight (g)	(t/ha)	(t/ha)
Brassica campestri	s L.						
Tori-7	76.83d	79.63f	59.98de	11.55ef	3.01e-h	0.85g	2.56f
TS-72	78.50cd	86.00ef	46.97f	11.10fg	2.80fg	0.85g	2.22f
SS-75	101.70a	101.30bc	18.40g	16.42bc	4.50a	0.54h	4.52d
PT-303	79.670c	90.28de	42.52f	10.65f-h	3.16de	0.97f	3.16e
BARI Sarisha-6	100.30a	95.43cd	38.80f	14.90cd	3.64b	0.03ef	4.53cd
BARI Sarisha-9	83.83b	102.10bc	56.78e	12.13ef	3.09d-f	0.83g	2.33f
Brassica juncia L.							
Jamalpur-1	102.30a	119.20a	82.25ab	8.27c	3.50bc	1.23d	4.52d
BARI Sarisha-10	100.50a	107.90b	71.27c	13.13de	2.73g	1.27cd	4.67b-d
Ishurdi local	100.80a	119.60a	84.53a	9.22hi	3.31cd	1.34bc	4.96ab
Daulat	102.50a	119.60a	69.55c	10.72f-h	2.14h	1.10e	4.43d
Rai-5	101.20a	126.20a	72.92bc	9.67g-h	2.23h	1.40ab	4.90a-c
Brassica napus L.							
BARI Sarisha-7	100.80a	89.18de	59.25de	17.20ab	3.65bc	1.29cd	4.78a-d
BARI Sarisha-8	101.80a	95.71cd	67.08cd	18.77a	3.63b	1.45a	5.08a
CV (%)	1.99	6.71	13.67	12.52	8.34	7.51	7.89
F-Test	*	*	*	*	*	*	*

Table 11. Mean performance of different characters of 13 Mustard varieties at Gabtali MLTs under Bogra during 2002-03

Figure (s) followed by different letters in same column are statistically significant at 5% level of probability.

Table 12. Yield and yield contributing characters of different rape seed mustard at Narikeli, Jamalpur, 2002-03

Treat	Flowering (days)	Maturity (days)	Primary branches /plant (no.)	Branches/ plant (no.)	Silequa/ plant (no.)	Seed yield (kg/ha)
Brassica campestris L.			· · · · ·			
Tori- 7	28	75	3.3	6.8	85	812
TS-72	35	82	3.5	5.8	92	890
SS-75	45	93	3.3	5.4	103	1380
BARI Sarisha -6	42	95	2.8	4.8	72	1350
BARI Sarisha-9	37	85	3.5	6.8	110	1210
BARI Sarisha-12	46	95	3.5.	5.9	93	1335
Brassica juncia L.						
Rai- 5	41	94	3.6	8.6	129	1205
BARI Sarisha-10	46	95	3.0	6.3	105	1277
BARI Sarisha-11	43	96	3.6	6.2	98	1425
Daulat	43	96	3.4	6.3	125	1220
Brassica napus L.						
BARI Sarisha-7	42	89	2.7	6.9	112	1356
BARI Sarisha-8	35	86	3.2	5.8	65	1465

FARMERS FIELD TRIAL OF CHICKPEA

Abstract

A farmers' yield trial of chickpea with five lines and one variety was conducted at FSRD site, Ishan Gopalpur, Faridpur during rabi 2002-03 to observe the performance of different varieties/lines of chickpea. Grain yield and yield attributes were significantly different among the varieties/lines except 100-seed weight. Significantly the highest grain yield was produced by BCX-91040-3 (1063.7 kg/ha) followed by BARI Chola-5 (950 kg/ha) and the lowest by BCX-91044-3 (683.3 kg/ha).

Introduction

Chickpea is the 3rd number of pulse crop of Bangladesh in respect to area (99543 ha) with production of only 50771.5 tons. Few numbers of recommended varieties of chickpea are available. So, it is need to release more number of high yielding chickpea varieties. Keeping this in mind the trial was undertaken to evaluate the performance of these new lines/varieties in the farmers' field.

Materials and Methods

The experiment was conducted at the FSRD site, Ishan Gopalpur, Faridpur during rabi 2002-03 following RCB design with 4 replications under rainfed condition in farmers' field. The unit plot size was 6 m x 5 m and seeds were sown in line with 40 cm spacing on 29th November 2002. The crop was fertilized 20-40-20 kg-N-PO-KO/ha at final land preparation. No irrigation and weeding were done. Fungicide (Bavistin) was sprayed once on 25th February 2003 to control the Botrytis Grey Mold (BGM) disease. Insecticide was also applied to control pod borer. The crop was harvested on the 24th to 29th March 2003.

Result and Discussion

Plant height, plant/m², pods/plant and seed yield was significantly influenced by variety/lines. The line BCX-910403 matured earlier (i.e. 5 days) than other variety/lines. The line BCX-91043-1 showed higher plant height but statistically identical to BCX-91040-3 and special plant-3. Pods/plant produced similar in number except BCX-910443 which showed the lowest no. of pods/plant. Seed weight was not influenced with the variety/line. The highest seed yield was recorded from BCX-91040-3 line which statistically identical to variety BARI Chola-5. The average yield of chickpea in this years was no good due to high rainfall during the pod formation stage, which encourages the attack of pod borer.

Table 1. Yield and yield attributes of chickpea varieties/lines tested at FSRD site, Ishan Gopalpur, Faridpur during rabi 2002-03

Variety/line	Duration	Plant height	No. of	No. of	100-seed	Seed yield
variety/inte	(days)	(cm)	plants/m ²	pod/plant	wt. (gm)	(kg/ha)
Special plant-7	119	37.9a	37.9a	45.0ab	10.97	871b
Special plant-3	119	35.9ab	35.9ab	47.0ab	10.63	837b
BCX-91044-3	119	32.8b	32.8b	39.7b	11.13	683c
BCX-91043-1	119	32.1b	32.1b	51.7a	11.17	813bc
BCX-91040-3	114	35.4ab	35.4ab	49.0ab	10.74	1064a
BARI Chola-5	119	39.3a	23.7a	41.3ab	11.00	950ab
CV (%)		6.5	11.6	12.5	4.2	8.9
LSD (0.05)		**	**	*	NS	**

ON-FARM TRIAL TO EVALUATE THE EFFECT OF SEED SOURCE ON BGM INCIDENCE IN BARI CHOLA-5

Introduction

Chickpea grown in the High Barind Tract (HBT) of Bangladesh is largely not infected by BGM (Botrytis grey mould) and thus seed derived from the HBT should be disease free. It is thus hypothesized that BGM incidence will be less in HBT derived seed than in locally (Faridpur region) produced seed. It is therefore necessary to test this hypothesis in farmers' fields using chickpea variety BARI Chola-5. In the presence of absence of foliar application of fungicide (e.g. Bavistin or Acrobat).

Objectives:

To determine the extent of BGM development in chickpea crops grown either BGM infested area (e.g. Jessore region) or a BGM free area (High Barind Tract) under conditions of with and without application of fungicide.

Materials and Methods

The trial was conducted on farmers' field at FSRD site, Ishan Gopalpur, Faridpur during rabi season of 2002-03. The land type was medium having clay loam soil. The experiment was laid out in RCB design with five dispersed replications. The unit plot size was 0.2 bigha (266. sq. meter). Four treatments were used in the trial, i) Local seed with no spray, ii) HBT seed with no spray, iii) Local seed with spray and iv) HBT seed with spray. Seed at the rate of 45 kg/ha were sown by broadcasting from 3rd December to 14th December 2002. Fertilizer at the rate of 20 kg P/ha was applied at final land preparation. Fungicide Bavistin was sprayed after 50% completion of flowering at the rate of 66 gm in 66-liter water for one bigha area. Insecticides Dessis was sprayed at the rate of 33 ml in 33-liter water for one bigha area. Heavy rainfall (March 110.36 mm) during the pod formation stage of chickpea encourages the pod borer. The crop was harvested from 5th April to 10th April 2003.

Results and Discussion

Local seed with spray and no spray showed early flowering than HBT seed with spray and no spray. Significant difference was not found among the plants/m2 at 30 DAS and at maturity. But seed yield significantly affected by the treatments. Higher seed yield was obtained from local seed with spray but statistically identical to HBT seed with spray. The lowest seed yield recorded from local seed with no spray but at par to HBT seed with no spray. It is noted that spray either local seed or HBT seed showed significantly higher yield than no spray either seed collected from locally or HBT.

Table 1.	Yield performance of	chickpea as	affected by	seed sourc	e in BGM	infested	area	in B.	ARI
	Chola-5 at FSRD site,	Ishan Gopal	pur, Faridpu	r during rab	i 2002-03				

Treatment	Days to	No. of plants/m ²	No. of plants/m ²	Seed yield
I reatment	flowering	(30 DAS)	(at maturity)	(kg/ha)
HBT seed with spray	70	24.8	22.2	1006a
Local seed with spray	67	26.6	23.2	1030a
HBT seed with no spray	69	26.0	21.2	850b
Local seed with no spray	67	24.2	21.0	842b
CV (%)	-	-	-	3.1
LSD (0.05)	NS	NS	NS	**

BREAD WHEAT ADAPTIVE LINE TRIALS AT FARMER'S FIELD CONDITION

Abstract

The experiment was conducted in medium high land at FSRD site, Tangail, Comilla, Pabna, Mymensingh, Dinajpur, Rangpur, Jessore and Jamalpur during rabi 2002-03 to assess the yield performance of bread wheat lines in different agro-climatic zones under farmer's field condition. It was observed that the higher grain yield recorded from BAW1008 in all most sites. But at Goyeshpur and Sujanagar where all lines/variety were showed statistical identical. At Magura, Chowgacha and Melandah, BAW966 produced superior grain yield than BAW1008.

Introduction

Wheat (*Triticum aestivum*) is the second most important cereal crop next to rice, cultivated during rabi season in Bangladesh. The area and production of wheat were markedly increased from 1975-1985 and after that area and production started declining. This declining was probably associated with yield, higher production cost, decreasing soil fertility, low market price during the harvest price. Wheat Research Center of BARI has developed a good number of wheat lines/varieties and also some technologies to eliminate those constrain. The Wheat Research Center (WRC) conducted several on station trials with newly released bread wheat lines which need to be tested and compared with widely cultivated standard varieties at on farm level. The experiment was undertaken to assess the yield performance of bread wheat lines/variety and determines their potentiality.

Materials and Methods

The experiment was undertaken at the farmers' field of Tangail, Comilla, Pabna, Mymensingh, Dinajpur, Rangpur, Jessore and Jamalpur during rabi 2002-03. Four advanced bread wheat lines were BAW966, BAW1006 and BAW1008 compared with released variety Kanchan in medium high land under irrigated condition. The experiment was laid out in a randomized block design with three replications. The unit plot size was 4m x 5m. The land was fertilized with 220 kg urea, 132 kg TSP, 68 kg MP, and 117 kg gypsum/ha. Two-third of urea and all amount of fertilizer were applied at final land preparation. Seeds were sown on 10 Dec., 20-25 Nov., 30 Nov.- 2 Dec., 25 Nov., 21-23 Nov., 25-30 Nov. at Tangail, Comilla, Pabna, Rangpur, Dinajpur, Jessore and Jamalpur, respectively. The crop was sown with 120 kg seed/ha at a spacing 20 cm in solid line. One irrigation was applied at 23 days after sowing (DAS) followed by rest urea as top dress. One hand weeding was done at 27 days after sowing. The crop was harvested on 16-20 March at Tangail, 29 March at Comilla, 22-26 March, Pabna, 28-31 March, Rangpur, 8-17 March, Dinajpur, 15-17 March at Jessore and 15-24 March, Jamalpur 2003, respectively. All necessary data were collected and analyzed statistically.

Site: Palima, Tangail

Result and Discussion

Days to maturity, yield and yield attributes were significantly influenced by different variety/line except plant height and length of spike. Grains/spike was significantly influenced by different variety/line. Number of grain/spike was obtained from Kanchan though significant difference was not found among variety/line except BAW1006. Bold grain size showed in line BAW1008 which was significantly different from other lines/variety. Higher grain yield was obtained from lineBAW1008, which was at par to line BAW966. The line BAW1008 showed 21% higher grain yield than Kanchan. The higher grain yield was achieved due to higher number of spikes/m² and grain weight. Straw yield showed higher from BAW1008 followed by all other variety/line except Kanchan.

Site: Chandina, Comilla

Grain yields and 1000-grain weights were significantly influenced by different variety/lines (Table 2). The line BAW1006 showed significantly the highest grain weight among the varieties. Grain yield was not significantly influenced by variety and all the line showed higher grain yield than Kanchan.

Among the lines, BAW966 revealed slightly higher yield with shortest maturity days (103) as compared to other variety.

Site: Sujanagar & Goyeshpur MLT site, Pabna

At Sujanagar, grains/spike and 1000-grain weighty were significantly influenced by variety/line. Significantly the highest grains/spike was obtained from BAW966. The line BAW-1008 showed the highest grain weight among the lines/variety. Grain yield was not significantly influenced by variety/lines (Table 3a).

At Goyeshpur, grains/spike and 1000-grain weight were significantly affected by variety/line. The line BAW-1006 and BAW-1008 showed similar grains/spike. Significantly the highest grain weight was recorded from BAW-1008. Higher grain yield was obtained from BAW1006 which was statistically identical to other variety/lines (Table 3b).

Site: Nilphamari and Polashbari, Rangpur

The result revealed that there was significant difference in respect of all the characters studied except spikes/m², grain/spike and straw yield (Table 4a). Significantly higher 1000-grain weight was recorded from BAW1008. There was significant difference in respect of grain yield among the advance lines and released varieties, numerically the highest yield (5.01 t/ha) was obtained from BAW1008. The yield of all the tested lines were found to be reasonably good (4.66-4.98 t/ha).

At Polashbari, filled grain/spike, 1000-grain wt. and grain yields were significantly influenced by variety/line. The line BAW1008 showed higher no. of grains/spike but statistically at par to BAW966. Significantly the highest grain wt. was recorded from BAW1008. Similar trend was followed in case of grain yield. The line BAW1008 showed 21% higher grain yield than Kanchan. Straw yields were not statistically influenced by variety/line.

Site: Mymensingh Sadar

All yield attributes were significantly influenced by variety/line. Grains/spike showed similar in BAW1008 and BAW966. Significantly the highest grain wt. was recorded from BAW1006. The highest grain yield was obtained from BAW1008 which was significantly different from other variety/line. Straw yield also showed higher from BAW1008.

Site: Shubra and Boda MLT, Dinajpur

At Shubra, Grains/spike, 1000-grain wt. grain and straw yields were significantly influenced by variety/lines. Significantly the highest grains/spike was obtained from BAW-1008. Similar trend was followed in case of 1000-grain wt. Though the highest grain yield was recorded from BAW1008 but statistically at par to BAW1006. Straw yields were statistically similar except Kanchan which produced the lowest yield.

At Boda, yield attributes were significantly influenced by variety/line except straw yield. Significantly the highest grains/spike and 1000-grain wt. were recorded fromBAW1008 which resulted the highest grain yield among the variety/line.

Magura MLT site

Plant height and yield attributes were significantly influenced by variety/lines. Significantly the highest plant height was recorded from BAW1008. The line BAW966 and BAW1006 showed similar spike/m² and the lowest from BAW1008. The variety Kanchan and line BAW966, BAW1008 produced similar grain/spike whereas BAW1006 gave the lowest grain/spike. Significantly the highest

grain weight was recorded from BAW1008. Higher grain yield was obtained from BAW966 which was statistically identical to BAW1008 but late line showed higher straw yield.

Chowgacha MLT site, Jessore

Plant height, Straw yield and yield attributes were significantly affected by variety/line. The highest plant height was recorded from BAW966 which was significantly different from other variety/lines. The lowest spikes/m² was obtained from BAW966 whereas other variety/lines were at par. Grains/spikes showed similar in variety Kanchan, BAW966 and BAW1008. Significantly the highest grain weight was recorded from BAW1008. BAW966 and BAW1008 showed similar yield and higher than Kanchan and BAW1006. BAW966 and BAW1008 showed similar yield and higher than Kanchan and BAW1006 but significantly the highest straw yield was obtained from BAW1008.

Melandah MLT site, Jamalpur

Plant height, straw yield, grain yield and yield attributes were significantly influenced by variety/line (Table 8a). Significantly the highest spikes/m² was obtained from BAW1006 and the lowest from BAW1008. But longest spike was recorded from BAW1008 and others were similar. The line BAW966 and BAW1008 were superior in grains/spike than other variety/lines. Grain weights were similar in BAW966 and BAW1006. Similar trend was obtained from grain yield but significantly the highest straw yield from BAW1008. The line BAW1008 showed lower grain yield than other variety due to less no. of spikes/m² and grain weight.

Sherpur MLT site

Plant height, straw yield, grain yield and yield contributing characters were significantly influenced by variety and line (Table 8b). The line BAW1006 showed significantly the highest no. of spikes/m². Similar trend was followed in case of 1000-grain weight, grain yield and straw yield. The highest grain yield was obtained from BAW1008 due to higher grain/spike and 1000-grain weight.

Table 1. Yield and yield	d contributing character	s of newly released	d wheat lines/v	arieties (FSRD site
Palima, Tanga	ail during 2002-03)			

Varieties	Days to	Plant height	Spike length	No. of spike m^2	No. of grain/	1000- grain wt.	Grain yield	Straw yield
/Lines	maturity	(cm)	(cm)	spike/ iii	spike	(g)	(t/ha)	(t/ha)
Kanchan	107a	98.87	8.15	235d	56a	43.14c	3.33c	4.00b
BAW966	102c	97.80	11.43	297b	55a	40.43d	3.83ab	4.33ab
BAW1006	105b	95.43	12.20	330a	47b	50.32b	3.70bc	4.17ab
BAW1008	108a	98.37	13.10	276c	57a	55.49a	4.17a	4.67a
CV%	1.01	27.71	24.79	1.12	5.84	1.25	6.38	8.01

Table 2. Yield and yield attributes of bread wheat variety/lines at Chandina, Comilla, rabi 2002-03

Variety/line	Maturity (days)	Plant height (cm)	Effective tiller/plant	Length of spike (cm)	1000-grain wt. (g)	Grain yield (t/ha)
Kanchan	110	96.57	3.4	40.87	38.43	3.72
BAW-966	103	97.57	3.5	45.77	38.47	4.41
BAW-1006	106	99.87	4.3	42.37	45.40	4.37
BAW-1008	110	100.20	4.2	44.63	42.83	4.32
LSD (0.05)	NS	NS	NS	NS	1.25	0.50

Treatment	Days to maturity	No. of grains/ spike	1000-grain wt. (g)	Grain yield (t/ha)
Kanchan	109	36b	41.90c	3.36a
BAW-966	104	47a	36.03d	3.22a
BAW-1006	110	37b	47.63b	3.37a
BAW-1008	112	39b	49.94a	3.28a
CV (%)		7.7	2.0	10.2

Table 3a. Performance of yield and yield contributing characters of Wheat varieties at MLT site, Sujanagar, Pabna during 2002-03

Table 3b. Performance of yield and yield contributing characters of Wheat varieties at MLT site, Goyeshpur, Pabna during 2002-03

Treatment	Days to maturity	No. of grains/ spike	1000-grain wt. (g)	Grain yield (t/ha)
Kanchan	112	34b	36.10c	2.71a
BAW-966	105	28b	35.67c	2.41a
BAW-1006	113	43a	46.99b	3.37a
BAW-1008	115	39a	50.45a	2.83a
CV (%)		16.9	4.0	16.8

Table 4a. Yield and yield contributing characters of different advance lines/varieties of wheat at Nilphamari MLT site of OFRD, Rangpur during rabi 2002-03

Treatment	Days to maturity	Plant height (cm)	Spike/m ² (no.)	Grains/ Spike (no.)	1000- grain wt. (g)	Grain yield (t/ha)	Straw yield (t/ha)
Kanchan	114	107a	325	38	47.2c	4.19b	5.96
BAW-966	113	100c	331	44	37.6b	4.66ab	6.49
BAW-1006	114	101bc	332	42	47.0b	4.79ab	6.66
BAW-1008	113	106a	337	41	50.3a	4.98a	6.74
CV (%)	0.7	3.0	5.4	6.4	1.0	6.2	7.2

Table 4b. Yield and yield contributing characters of different advance lines/varieties of wheat at Polashbari MLT site of OFRD, Rangpur during rabi 2002-03

Treatment	Days to maturity	Plant height (cm)	Spike/m ² (no.)	Grains/ Spike (no.)	1000- grain wt. (g)	Grain yield (t/ha)	Straw yield (t/ha)
Kanchan	115	108	325	31c	46.5c	3.87c	5.98
BAW-966	113	107	337	38ab	37.2b	4.15bc	6.44
BAW-1006	114	107	333	36b	47.7b	4.65b	6.50
BAW-1008	113	104	341	41a	50.0a	5.27a	6.70
CV (%)	0.7	3.0	5.5	5.5	1.1	6.4	8.1

Treatment	Plant height	Spike/m ²	Grains/	1000-grain	Grain yield	Straw yield
	(cm)	(no.)	Spike (no.)	wt. (g)	(t/ha)	(t/ha)
Kanchan	93.5c	262	35b	44.7b	3.58b	6.00b
BAW-966	105.4a	256	40a	42.0c	3.70b	5.47b
BAW-1006	96.6b	267	42c	50.0a	3.60b	6.87a
BAW-1008	98.0ab	258	41a	46.7b	4.28a	7.55a
CV (%)	1.01	4.5	3.4	2.7	9.86	6.20

Table 5. Yield and yield contributing characters of different advance lines/varieties of wheat at Mymensingh Sadar during rabi 2002-03

Table 6a. Yield and yield contributing characters of different advance lines/varieties of wheat at Shubra MLT site, Dinajpur during rabi 2002-03

	Dave to	Plant	Spike	Sniko/m	Grains/	1000-	Grain	Straw
Treatment	Days to	height	length	$\frac{2}{2}$ (no.)	Spike	grain	yield	yield
	maturity	(cm)	(no.)	- (no.)	(no.)	wt. (g)	(t/ha)	(t/ha)
Kanchan	113a	105	10.0b	340	40bc	51.78c	3.60c	4.63b
BAW-966	104ab	103	9.8b	339	44b	38.32c	4.06b	5.40a
BAW-1006	107ab	103	9.8b	344	38c	46.22c	4.33ab	5.33a
BAW-1008	104b	101	12.6a	299	52a	52.06a	4.66a	5.30a
CV (%)	2.55	3.53	4.61	7.46	4.1	3.14	5.26	4.48

Table 6b. Yield and yield contributing characters of different advance lines/varieties of wheat at Boda MLT site, Dinajpur during rabi 2002-03

Treatment	Days to maturity	Plant height	Spike length	Spike/m 2 (no.)	Grains/ Spike	1000- grain	Grain yield	Straw yield
	maturity	(cm)	(no.)	(1101)	(no.)	wt. (g)	(t/ha)	(t/ha)
Kanchan	111a	97.7a	10.37b	236a	43c	42.0c	2.74b	3.75
BAW-966	100c	92.57b	10.63b	240a	50b	39.3c	2.84b	3.67
BAW-1006	107ab	96.3ab	11.00b	252a	42c	47.0b	2.94b	3.95
BAW-1008	103bc	93.5ab	13.00a	208b	54a	52.7a	3.33a	4.10
CV (%)	2.48	2.45	5.94	4.62	3.11	3.29	4.5	7.02

Table 7a. Performance of wheat varieties/lines at Magura MLT site during rabi 2002-03

	Plant	Spike	Smilto/m ²	Grains/	1000-	Grain	Straw
Treatment	height	length	spike/m	Spike	grain wt.	yield	yield
	(cm)	(no.)	(110.)	(no.)	(g)	(t/ha)	(t/ha)
Kanchan	99.53b	9.14ab	293ab	38a	36.73c	2.76b	3.92b
BAW-966	99.90b	10.34a	315a	40a	42.00b	3.33a	4.23b
BAW-1006	99.43b	8.27b	310a	32b	37.67b	2.88b	4.40ab
BAW-1008	102.00a	10.23a	277b	37a	48.57a	3.26a	4.92a

	Plant	Spike	Spiles/m ²	Grains/	1000-	Grain	Straw
Treatment	height	length	spike/iii	Spike	grain wt.	yield	yield
	(cm)	(no.)	(110.)	(no.)	(g)	(t/ha)	(t/ha)
Kanchan	90.00b	9.37b	402a	39a	35.00d	3.67b	4.75b
BAW-966	96.33a	9.63a	375a	41a	41.10b	4.13a	5.03b
BAW-1006	91.07b	9.33b	399ab	33b	37.23c	3.77b	5.05b
BAW-1008	91.33b	9.50ab	382ab	38a	49.17a	4.03a	5.81a

Table 7b. Performance of wheat varieties/lines at Chowgacha MLT site, Jessore during rabi 2002-03

255

Table 8a. Yield and yield contributing characters of Wheat at MLT site, Melandah during 2002-03

	Plant	Spike	Spiles/m ²	Grains/	1000-	Grain	Straw
Treatment	height	length	spike/iii	Spike	grain wt.	yield	yield
	(cm)	(no.)	(110.)	(no.)	(g)	(t/ha)	(t/ha)
Kanchan	97.81a	8.30b	337b	35c	44.67b	3.60c	5.52b
BAW-966	94.07b	8.23b	328b	38a	54.29a	3.95a	4.85c
BAW-1006	99.77a	8.77b	368a	36bc	52.67ab	3.63ab	5.15bc
0BAW-	98.87a	11.77a	296c	37ab	43.33b	3.54b	6.23a
1008							
F-test	*	**	*	**	**	*	*
CV (%)	8.91	10.46	9.51	12.43	12.24	6.53	11.64

Table 8b. Yield and yield contributing characters of Wheat at MLT site, Sherpur during 2002-03

Treatment	Plant height	Spike length	Spike/m ²	Grains/ Spike	1000- grain wt.	Grain vield	Straw vield
	(cm)	(no.)	(no.)	(no.)	(g)	(t/ha)	(t/ha)
Kanchan	100.53bc	10.03ab	348b	33c	39.67c	3.00c	4.45c
BAW-966	99.34c	9.40b	349b	36b	33.33d	4.00b	5.28b
BAW-1006	101.90a	10.13ab	396a	35bc	43.67b	4.23b	5.63b
BAW-1008	100.80ab	10.87a	289c	42a	49.33a	5.13a	6.65a
F-test	*	*	*	**	*	**	**
CV (%)	7.63	5.07	11.39	10.62	12.13	9.18	8.03

AT

PERFORMANCE OF WHEAT THROUGH POWER SEEDER COMPARE TO TRADITIONAL METHOD

Introduction

Wheat (*Triticum aestvum*) is the second major cereal crop next to rice, cultivated during rabi season in Bangladesh. It has to compete with other important winter crops like pulses, oil seeds and vegetables. Due to higher cost of production of wheat it can not compete with above mentioned crops. Production cost of wheat, ploughing cost is major. CIMMYT developed a power seeder, which is able to furrow, line sowing and leveling of soil at a time. It reduce seed rate (20%), $\frac{1}{3}$ rd production cost and yield increased (20-30%) of wheat over traditional broadcast method. Therefore, collaboration with CIMMYT and BARI conducted a production program of wheat to see the comparative performance in between mechanical and traditional method.

Materials and Methods

A cultivation program was conducted at the BARI Technology Village, Puspapra, Pabna during 2001-02 and 2002-03 and FSRD site, Syedpur, Rangpur to compare the traditional practice of wheat production with mechanical method. Before starting the program a motivational meeting was organized for successful implementation of the program. Fourteen cooperator farmers were selected in same land categories. The production program covered 4.00 hectares of land. Wheat variety Protiva in 2001-02 and Shatabdi at 2002-03 was sown through power seeder and Kanchan was sown in traditional broadcast method at Pabna but Protiva at Rangpur during 2002-03. The crop was fertilized at the rate of 200-150-50-120-7.5-7.5 kg Urea-TSP-MP-Gypsum-Zincoxide and Borax/ha. The seeds were sown on 7 December 2001 and 10-14 December 2002 at Pabna and 3-5 December 2002 at Rangpur. Intercultural operation and plant protection measures were done as and when required. Crop was harvested on 22-27 March 2002 and 3-5 April 2003 at Pabna and 26-31 March 2003 at Rangpur.

Results and Discussion

Pabna site

During 2001-02, the highest grain yield (2.32 t/ha) was obtained where mechanical seeder was used for wheat cultivation which was 4% higher than traditional broadcast method. Gross return (Tk.21885/ha), gross margin (Tk.11310/ha) and benefit cost ratio (2.06) were obtained from mechanical seeding method.

In 2002-03, the highest grain yield (3.44 t/ha) was obtained from mechanical seeding which was % higher than traditional broadcast (2.22 t/ha) method. Economic point of view, higher gross return (Tk. 33075/ha), gross margin (Tk.21480/ha) and benefit cost ratio (2.85) were obtained from mechanical seeding reduced and higher profit could be possible compare to traditional production method.

Rangpur site

The higher grain yield was obtained where power seeder was used which was 40% higher than traditional broadcast method. The gross return, gross margin and BCR (2.45) were obtained from power seeding method.

Conclusion

Wheat seeding through mechanical seeder was an improved method for wheat cultivation. Moreover, the method was easy, profitable and minimized the turn around time. So, the program can be recommended for large-scale extension at farmers' field.

Farmers' reaction

Farmers showed very much positive response with new mechanical seeder. They expressed their satisfaction with less production cost and recover the turn around time and they also opined that the price of seeder is too high.

Table 1. Comparative performance of Wheat in between power seeder and traditional production method in 2001-02

Method	No. of monitored farmers	Area covered (ha)	Grain yield (t/ha)	Stover yield (t/ha)	Gross return (Tk./ha)	TVC (Tk./ha)	Gross margin (Tk./ha)	BCR
Seeding with power seeder	5	2.15	2.32	4.13	21885	10575	11310	2.06
Traditional broadcast method	5	2.15	2.25	3.95	21100	11607	9493	1.81

Table 2. Comparative performance of Wheat in between power seeder and traditional production method in 2002-03

Method	Variety	No. of monitored	Area covered	Grain yield	Stover yield	Gross return	TVC	Gross margin	BCR
	useu	farmers	(ha)	(t/ha)	(t/ha)	(Tk./ha)	(1K./110)	(Tk./ha)	
Seeding with power seeder	Shatabdi	7	2.0	3.44	4.23	33075	11595	21480	2.85
Traditional broadcast method	Kanchan	7	2.0	2.22	2.89	21425	12765	8660	1.68

Table 3. Comparative performance of wheat (var. Protiva) in between power seeder and traditional production method

Method	No. of farmers involved	Area covered (ha)	Grain yield (t/ha)	Straw yield (t/ha)	Gross return (Tk/ha)	TVC (Tk/ha)	GM (Tk/ha)	BCR
Seeding with power seeder	8	2.0	3.86	4.54	33150	13509	19641	2.45
Traditional broadcast method	5*	1.25	2.33	3.53	22005	14528	5877	1.40

* No. of monitored farmers

ON-FARM VERIFICATION TRIAL OF HYBRID MAIZE

Abstract

Five varieties/lines (BM TOP-2, BFC 101, CMS 933084, CMT 975032 and Pacific) were evaluated at Jhenaidah, Tangail and Pabna site during 2002-03. At Jhenaidah, Significantly the highest grain yield was obtained from CMS 93304 due to the highest ear height, grains/cob and grain weight but at Palima, Tangail Pacific-983 showed the highest yield among the varieties.

Introduction

Bangladesh Agricultural Research Institute has recently released a hybrid maize variety BARI hybrid maize-1. Besides this, some other advance lines were identified. The variety /line is said to be higher yielder. It was felt necessary to evaluate the performance of the said variety across the locations all over the country. Considering above the present study was initiated with the following objectives i) to observe the yield potential of BARI hybrid maize-1 compared to the check varieties and ii) to select the suitable hybrid maize variety(s) for Jhenaidah & Tangail region.

Materials and Methods

The experiment was conducted at FSRD site, Palima, Tangail, Goyeshpur, Pabna and MLT site, Jhenaidah during rabi seasons of 2002-03. The experiment was laid out in Randomized Complete Block Design with three replications. The unit plot measured 4.5 m x 5.0 m. Four advanced lines of hybrid maize viz. CMS933084, BM Top-2, CMS975032 and Pacific-983 (Imported) were included in the study. The crop was fertilized with 250-120-170-40-5 kg N-P₂O₅-K₂O-S-Zn/ha. One-third N and all other fertilizers were applied as basal. The remaining N was applied as top-dress in two equal splits at 8-12 leaf stage and at tasseling stage. The seeds were sown on Nov. 20, 2002 at Jhenaidah, 22 December 2002 at Tangail and 22 December at Pabna. The seeds were sown maintaining a spacing of 75 cm x 25 cm with seed rate 20 kg/ha. Irrigation and other intercultural operations were done as and when necessary. The varieties/advance lines took around 160 and 90 days to maturity. The crop was harvested on 21-24 April 2003 at Jhenaidah, 14 May 2003 at Tangail and 25 May 2003 at Pabna. Data on the yield and yield contributing characters were recorded and analyzed statistically.

Results and Discussion

MLT site, Jhenaidah

Plant height, yield and yield attributes were significantly influenced by variety. Significantly highest plant height was recorded from CMS 933084 and the lowest from Pacific-983. The higher no. of grains/cob was also produced by CMS933084 but at par to Pacific-983 and BM Top-2. The highest grain weight was obtained from CMS 933084 but statistically identical to Pacific-983 & BFC 101. Significantly the highest grain yield was obtained from CMS 933084 due to higher length of cob, grain/cob and 100-grain weight. All the variety/line showed much higher yield as compared to other parts of the country.

FSRD site, Palima, Tangail

Plant height, yield and yield attributes were significantly influenced by different variety/line. The highest physiological maturity (143 days) was obtained from Pacific 983 & the lowest (136 days) from CMT 975032. Significantly the highest plant height was obtained from CMS 99084. Similar in case of ear height. Cob length differed significantly where higher length was recorded from CMT 975032 which was at par to CMS 933084. Significantly the highest width of cob was obtained from Pacific 983 but the Pacific 983 and CMS 933084 showed similar grain weight. Significantly the highest grain yield was produced by Pacific 983.

FSRD site, Goyeshpur, Pabna

Days to maturity, plant height, yield and yield attributes were significantly affected by variety/line. More days required to BFG 101 and shortest days to Pacific-983. Significantly the highest plant recorded from BHM-2 similar trend was followed in case of ear height but grains/cob was statistically identical to all variety/line. Significantly the highest grain weight was obtained from BGM-2 grain yield was higher from BHM-2 which was statistically identical to Pacific-983, BFC-101 and CMT-975032 but stover yield was significantly the highest from variety BHM-2.

From the study it was revealed that variety Pacific 983 superior at Tangail but CMS 933084 at Jhenaidah and BHM-2 at Pabna than other varieties/lines but for confirmation it needs further another year trial for conclusion.

	_					
Variatias	Plant height	Ear height	Length of	No. of	100-grain	Grain yield
varieties	(cm)	(cm)	cob (cm)	grains/cob	wt. (g)	(t/ha)
Pacific 983	179.9c	81.23c	17.13bc	541.2a	38.37ab	11.16b
CMS933084	219.7a	120.9a	17.80abc	549.5a	39.25a	12.92a
BFC 101	188.9bc	85.50c	16.97c	454.3b	37.95abc	10.32b
BMTOP 2	202.1b	101.9b	18.27ab	507.6ab	37.40bc	11.13b
CMT 975032	189.1bc	85.70c	18.73a	449.7b	36.72c	10.90b
CV (%)	6.87	9.59	5.51	9.21	3.26	9.82

Table 1. Yield and yield components as influenced by hybrid maize varieties were tested at MLT site, Jhenaidah during 2002-03

Table 2. Yield and yield contributing characters of hybrids Maize at FSRD site Palima, Tangail during 2002-03

Varieties/lines	Days to maturity	Plant height (cm)	Ear height (cm)	Cob length (cm)	Cob breadth (cm)	1000-grain wt.	Grain yield (t/ha)
BM Top-2	139	241.9b	94.47b	20.43bc	15.32b	360.0b	5.52b
BFC 101	137	233.1bc	88.03b	20.27bc	15.52b	369.0b	10.00b
CMS 933084	141	275.3a	101.1a	21.17ab	15.15b	396.0a	10.08b
CMT 975032	136	232.9bc	88.27b	22.13a	15.35b	364.8b	9.25b
Pacific 983	143	230.2c	93.17 b	19.72c	17.15a	386.5a	11.68a
CV (%)		3.23	9.21	4.24	3.43	3.79	9.03

Table 3. Yield and yield contributing characters of hybrids Maize at FSRD site Goyeshpur, Pabna during 2002-03

Variation	Dava to	Plant	Ear	Grain/	1000 arain	Grain	Stover
varieties/	Days to	height	height	cob	1000-grain	yield	yield
mes	maturity	(cm)	(cm)	(no.)	wt.	(t/ha)	(t/ha)
BM Top-2	147a	192.03b	87.57b	438.05a	301.53b	6.91b	8.12b
BFC 101	149ab	189.03bc	77.10c	464.80a	304.13b	7.80ab	8.10b
CMT 975032	147ab	187.73bc	77.60c	451.04a	313.33b	7.22ab	8.09b
BHM-2	149ab	226.47a	104.53a	440.99a	343.80a	8.19a	10.41a
Pacific 983	146b	179.73c	76.17c	498.08a	310.93b	8.21a	8.43b
CV (%)	1.4	4.3	6.8	14.1	5.3	11.8	12.2

ON-FARM TRIAL OF RADISH VARIETIES

Abstract

An on-farm trial was conducted at FSRD site Palima, Tangail, Atkapalia, Noakhali, Narikeli, Jamalpur, Golapganj, Sylhet, MLT site, Sunamganj in 2001-03 Moulvibazar and Faridpur during rabi 2002-03 to observe the performance of newly developed radish varieties BARI Radish-2 (Pinky) and BARI Radish-3 (Druti) at different farmers' fields. At Palima, the variety Pinky and Druti showed average yield of 41.71 and 50.2 t/ha, respectively but Tasakisan variety showed higher yield (49.26 t/ha) among the variety during 2002-03. Higher gross return and margin was recorded from variety Druti and also higher benefit cost ratio from the same but higher BCR from Tasakisan in 2002-03. At Noakhali, higher yield from Tasakisan followed by pinky and similar trend in BCR. At Jamalpur, there was no difference in yield between two varieties but Pinky showed higher yield at Golapganj, Sunamganj and Moulvibazar during 2002-03.

Introduction

Radish is a winter vegetable in our country. It is widely grown vegetable in Bangladesh. BARI has already released three improved radish varieties which are grown in specific areas. On the other hand, normally the developed varieties in the farmer's field under cultivation gradually degenerate overtime. So, it is necessary to replace it by new one. Therefore, newly released variety was put under trial at different locations for their adaptability and acceptability at farmers' level.

Materials and Methods

The trial was conducted at FSRD site Palima, Tangail, Atkapalia, Noakhali, Jamalpur and Golapganj, Sunamganj, Sylhet MLT site, during rabi 2001-03, Moulvibazar and Faridpur during 2002-03. BARI Radish-2 and BARI Radish-3 were used. The unit plot size was 200 sq.m for each variety. One demonstration plot constituted 2 unit plots. Plot to plot distance was 75 cm and plant spacing was 30 cm x 30 cm with two seeds/hill at the seed rate of 50 g/200sq.m². Seeds were sown in 1st week of November at Palima, Tangail, November 18 to December 5 at Noakhali and 24-30 October 2002 at Jamalpur, 20-24 November at Golapganj and 25 October-8 November at Sunamganj and 5 November at Faridpur. The fertilizer were applied at the rate of 10 t/ha cowdung and 375 -155-255 kg/ha of urea, TSP and MP. The entire quantity of cowdung, TSP and half of urea and MP were applied during land preparation. The rest of urea and MP are to be applied as top dressing after 20 and 30 days of sowing. Intercultural operations such as weeding and irrigation were done whenever required but rainfed at Noakhali. The crop was harvested at marketable size from 12-14 December 2003 at Jamalpur and 25 December 2002 to 5 January 2003 at Faridpur and late December to late January at Noakhali. Observations were made on root weight/plant (g), root yield (t/ha) and farmer's reaction.

Result and Discussion

Site: Palima, Tangail

The data on yield and yield components of radish varieties are presented in Table 1. Average root height of Pinky and Druti were 23.34 and 25.46 respectively. Average root weight and root yield without leaf of Pinky variety were 415 g/plant and 46.11 t/ha. On the other hand, average root weight and root yield without leaf of Druti variety were 461.60 g/plant and 51.30 t/ha. On an average, higher root height and root weight was recorded from the variety Druti which reflected higher yield in 2001-02. During 2002-03, the variety Tasakisan was included which showed higher yield due to higher root length, root breadth and root weight. Gross return and margin was higher from the variety Druti. But due to higher yield and price, higher benefit cost ratio was obtained from the variety Druti in 2001-02 but higher BCR was recorded from Tasakisan during 2002-03.

Site: Atkapalia, Noakhali

Root length, root weight were significantly influenced by different varieties but yield was insignificant in 2001-02 but significant during 2002-03 (Table 2). Significantly the highest root length

was obtained from Tasakisan but root weight between Druti and Tasakisan were statistically identical. There was no significant difference was found in different variety but slightly higher yield from Druti in 2001-02 but higher yield from Tasakisan followed by Druti in 2002-03. The highest gross return was recorded from Tasakisan which also showed higher benefit cost ratio which closely followed by Pinky. Yield was lower than other site, that the experiment was conducted at Charland under rainfed conditions.

Site: Jamalpur and Sylhet

Root weight/plant, no. of root/m² and root yields was statistically identical at Jamalpur (Table 3). At Golapganj higher yield was obtained from Druti in 2001-02 but in 2002-03 from Pinky but at Sunamganj the highest yield from pinky (on average) and similar trend was followed at Moulvibazar in 2002-03.

Site: Ishan Gopalpur, Faridpur

Plants/m², root length and diameter was not varied among two varieties but weight & root was the highest from Pinky. Root yield also produced the highest from Pinky which showed the highest yield among all the sites under studied.

Farmers' reaction

- Farmers were very much interested to cultivate Druti variety for its colour and market price. But farmers are interested to cultivate Pinky for its attractive colour, taste and higher market price.
- They react positively to cultivate this vegetable in next season if seeds are available in proper time.
- Market price of Pinky is less than Druti for its red colour.
- Farmers of Faridpur site preferred for its big size, fibreless, tasty, higher yield and store can be done easily.

Table 1. Yield, yield attributes and cost benefit analysis (average) of Radish at Palima, Tangail during 2002-03

Variety	Root length	Root breath	Root wt.(g)	Root (t/	yield ha)	Gross return	TVC	В	CR
	(cm)	(cm)	/plant	01-02	02-03	(Tk./ha)	(1K./ha)	01-02	02-03
Druti	19.30	17.27a	368.3b	51.30	41.25b	130390	33573	4.75	3.88
Pinky	17.13	15.57b	298.3c	46.11	37.31b	98735	33573	3.66	2.94
Tasakisan	22.73	17.40a	441.8a	-	49.26a	130740	33573	-	3.89
CV%	14.16	2.55	4.37		4.34				

Price (Tk./kg): Pinky= 2.50, Druti = 3.00

Table 2. Yield, yield attributes and cost benefit analysis (average) of Radish at Atkapalia, Noakhali during 2002-03

	Root	Deat	Root yie	eld (t/ha)	TVC	Gross	BCR	
Variety	length	KOOL	2001 02	2002.02	TVC	return	2001 02	2002-
-	(cm)	wt. (g)	2001-02	2002-05	(1K./na)	(Tk./ha)	2001-02	03
Druti	20.72a	361.7a	16.94	36.20a	30215	126700	2.24	4.19
Pinky	19.27ab	332.1a	17.30	31.70ab	30215	110950	2.32	3.67
Tasakisan	17.69b	266.4b	17.19	26.48b	30215	105920	2.88	3.5
LSD (0.05)	2.66	1.47	ns	8.57				
CV (%)	7.99	10.91	34.88	15.74				

Price (Tk./kg): In 2001-02, Druti= 4.00, Pinky= 5.00 and Tasakisan= 4.00 In 2002-03, Druti= 3.50, Pinky= 4.00 and Tasakisan= 3.50

Table 3. Root weight and no. of root and root yield of radish at Jamalpur and Sylhet in 2002-03

Table 4. Yield and yield attributes of radish varieties at Ishan Gopalpur, Faridpur during rabi 2002-03

Variety	Plants/m ²	Root length (cm)	Root diameter (cm)	Weight of root/plant (g)	Root yield
Pinky	14.0	21.3	5.83	638	89.4
Druti	14.2	20.3	5.21	472	67.2

262

ON-FARM TRIAL OF TOMATO VARIETIES

Abstract

The experiment was conducted during Rabi season of 2002-03 at the FSRD site, Ishan Gopalpur, Faridpur, Golapganj, Sylhet and MLT site Sunamganj & Moulvibazar, and Lebukhali, Patuakhali. On an average, results showed that BARI Tomato-7 gave higher yield (87.3 t/ha) at Ishan Gopalpur, BARI Tomato-8 at Golapganj (87.0 t/ha), Moulvibazar (91.0 t/ha), Sunamganj (105.0 t/ha), and Patuakhali (20.5 t/ha), respectively.

Introduction

Tomato is a good source of vitamin and it is grown as a winter vegetable. In the year 1996-97 the cultivation of tomato was thirteen thousand ha, and the total tomato production was 93 thousand ton. Tomato has contained a rich amount of protein, calcium, vitamin 'A' and vitamin 'C'. In Bangladesh a large number of children have been suffering from blind disease due to the deficit of vitamin 'A'. In cause of nutrition value tomato is a very important vegetables. Tomato is the most economic vegetable crop, which is commercially grown in many areas of Bangladesh. Hence there is a need to study the performance of the existing varieties at farmers' field at different location of Bangladesh.

Materials and Methods

The experiment was conducted at the FSRD site, Ishan Gopalpur, Faridpur, Golapganj, Sylhet and MLT site Sunamganj and Moulvibazar and Patuakhali, respectively during Rabi season in 2001-03. A discussion meeting was arranged with co-operator farmers for implementation of the program. The site team supplied good quality seeds of BARI Tomato-2, 6, 7 and 8 to the farmers. Six farmers were selected and each farmers plot was considered as one replication. The treatment imposed on each replication was four BARI tomato varieties during 2001-02 but six varieties in 2002-03. The experiment was laid out in RCB design with six dispersed replications. The unit plot size was 4.8 m x 1.0 m. Twenty-thirty days old seedling were planted on 29 Nov., 21-28 Nov., 2-5 Nov., and 1-4 Dec. at Ishan Gopalpur, Goyeshpur, Golapganj, Sunamganj and Moulvibazar and 2nd week of October, 2002 at Patuakhali was 60 cm x 40 cm. The crop was fertilized with cowdung 10 t/ha and Urea TSP and MP at the rate of 550-450-250 kg/ha. Half quantity of cowdung and full dose of TSP were applied as basal during final land preparation. Remaining cowdung was applied during pit preparation. The Urea and MP were applied in two equal splits at 21 and 35 days after seedling transplantation. Dimecron/Ridomil/Diethane was applied at 25 and 40 days after seedling transplantation and other intercultural operation were done as and when necessary. Harvesting started at 20 February 2002 & 25 February 2003 and harvesting competed on 1st week in both the years at Ishan Gopalpur.

Results and Discussion

Site: Ishan Gopalpur, Faridpur

Only fruit/plant, yield/plant and yield (t/ha) was recorded which showed significant influenced by different variety. The variety BARI Tomato-7 showed higher fruit weight. Significantly the highest yield/plant was recorded from BARI Tomato-7. Similar trend was followed in yield (t/ha). Higher yield was obtained from BARI Tomato-7. On an average, the highest yield was obtained form BARI Tomato-7.

Site: Golapganj, Sunamganj and Moulvibazar, Sylhet

Statistical analysis was not done is any of the characters. From average mean data it showed that at BARI Tomato-8 performed better at Golapganj, Moulvibazar and Sunamganj.

Site: Lebukhali, Patuakhali

The result showed that no. of fruits/plant, yield/plant and yields were significantly influenced by variety. Significantly the highest fruits/plant was obtained from BARI Tomato-7 followed by BARI Tomato 9 & 6. But BARI Tomato-8 showed significantly the highest yield/plant. This resulted the highest yield in BARI Tomato-8 and significantly different from other variety.

From the above result it showed that BARI Tomato-7 gave higher yield at Ishan Gopalpur, but BARI Tomato-8 at Golapganj, Moulvibazar, at Sunamganj and Lebukhali, Patuakhali, respectively.

Farmers' reaction

Yield and market price of all four varieties are satisfactory, tasty and preferred by the farms of Patuakhali region.

Location	Voriety	Fruit wt.	Fruits/plant	Yield/plant	Fruit yie	eld (t/ha)
Location	variety	(gm)	(no.)	(kg)	2001-02	2002-03
Ishan	BARI Tomato-2	76.8bc	26	2.03b	69.22b	62.8b
Gopalpur,	BARI Tomato-3	61.8d	28	1.61c	-	48.0d
Faridpur	BARI Tomato-6	62.5b	29	1.77c	71.75b	52.3c
	BARI Tomato-7	95.8a	23	2.33a	103.22a	71.3a
	BARI Tomato-8	71.8c	25	1.63c	79.02b	48.5cd
	CV (%)	3.1		7.4	11.4	4.5
Golapganj	BARI Tomato-2	82	35	2.87	-	89
	BARI Tomato-3	105	27	2.83	-	86
	BARI Tomato-6	85	32	2.72	74.0	78
	BARI Tomato-7	124	26	3.22	51.9	97
	BARI Tomato-8	116	30	3.48	62.9	111
	BARI tomato 12	89	25	2.23	40.1	67
Sunamganj	BARI Tomato-2	84	28	2.35	-	72
	BARI Tomato-3	95	27	2.56	-	79
	BARI Tomato-6	84	23	1.93	65.8	61
	BARI Tomato-7	115	25	2.87	61.6	94
	BARI Tomato-8	108	35	3.78	93.2	116
	BARI Tomato-12	95	22	2.09	33.4	59
Moulvibazar	BARI Tomato-2	80	24	1.92	-	62
	BARI Tomato-3	90	28	2.52	-	75
	BARI Tomato-6	81	20	1.62	59.5	52
	BARI Tomato-7	118	25	2.95	51.3	90
	BARI Tomato-8	99	32	3.16	86.5	96
	BARI Tomato-12	84	19	1.60	-	48
Lebukhali	BARI tomato-6		23ab	1.94b	63.0b	64.2b
	BARI tomato-7		26a	1.89b	64.0b	63.6b
	BARI tomato-8		21b	2.15a	70.0a	70.5a
	BARI tomato-9		25a	1.71b	-	61.5b
	BARI Tomato-11	-	-	-	62.0b	-

Table 1. Comparative yield performance of different Tomato varieties at different location in rabi, 2002-03

ON-FARM TRIAL OF EARLY BRINJAL VARIETY

Abstract

The experiment was conducted at Farming System Research and Development (FSRD) site, Atkapalia, Noakhali and Lebukhali, Patuakhali in rabi 2001-03 with released three Brinjal variety viz. Kazla, Uttara and local at Noakhali and Kazla and Nayantara at Patuakhali to observe their performance at farmers' field. Under normal cultivation practice the highest yield (37 t/a) and BCR (3.84) was obtained from Uttara variety at Noakhali but Kazla showed better performance at Patuakhali

Introduction

Cultivation of vegetables is very low in Noakhali and Patuakhali site. It is a vegetable deficit area mainly for two reasons- (i) lack of vegetable cultivable land and (ii) farmers use local varieties. As a result production and quality of vegetables are degrading day by day. So, it is necessary to replace local variety. With this view newly released brinjal variety viz. Kazla, Uttara and Nayantara were put under trial at different farmers' field to find out their adaptability and acceptability at farmers level.

Materials and Methods

The experiment was conducted at FSRD site, Atkapalia, Noakhali in 2002-03 and Lebukhali, Patuakhali during rabi 2001-03. Newly released BARI brinjal variety- Kazla, Uttara & Nayantara were used. The experiment was laid out in RCB design with the three dispersed replication with spacing 30 cm x 30 cm. Seeds were sown seedbed in mid of October and transplanted in the main plot from 26 to 30 November 2002. The unit plot size was 10 to 17.5 m². Fertilizer doses were as per recommended dose. The entire quantity of cowdung, TSP and half of urea and MP were applied during land preparation. The rest of Urea and MP were top dressed after 20 and 30 days of transplanting. Other intercultural operations were done as per requirement. Harvesting was done from February 2 to 18 April at Noakhali.

Results and Discussion

Atkapalia, Noakhali

Fruits/plant, fruits weight and yield were significantly effected by variety. Significantly the highest fruits/plant was recorded from variety Uttara and the lowest from local. But local variety showed the highest weight followed by Kazla. Significantly the highest yield was obtained from benefit cost ratio (3.84).

The trial should be conducted another year for confirmation.

Lebukhali, Patuakhali

The variety Kazla showed the highest no. of fruits/plant but infected fruit-borer almost same for the two variety. Kazla variety had higher number of fruits/plant. On an average, higher fruit yield was obtained from variety Kazla due to more no. of fruits/plant and yield of fruits.

Farmers' Reaction

- The variety Kazla showed more popular due to its size, colour and storage ability.
- Disease resistance and taste of Kazla is comparatively better. The variety Nayantara sold higher price due its round shape and size. Both the varieties preferred by the farmers at Lebukhali site.

Treatment	No of	Each fruit	Yield	TVC	Gross	BCB
Treatment	fruits/ plant	weight (g)	(t/ha)	(Tk.)	return (Tk,)	DCK
Kazla	24.93b	53.22ab	34.31b	48100	171550	3.57
Uttara	27.30a	49.36b	36.97a	48100	184850	3.84
Local	15.63c	60.27a	29.05c	48100	145250	3.02
CV (%)	4.63	7.33	2.28			
LSD (0.05)	2.11	7.95	1.53			

Table 1. Yield and yield attributes of brinjal at FSRD site, Atkapalia, Noakhali during rabi season of 2002-03

Figures in column having similar letter do not differ significantly

Table 2. Performance of Brinjal variety-Kazla and Nayantara at Patuakhali during 2002-03

Variaty	No. of	No. of borer infected	Yield of fruits	Yield of fru	its (t/ha)
valiety	fruits/ plant	fruits/plant	(kg/plant)	2002-03	2001-02
Kazla	55	2.5	2.22	42.5	52
Nayantara	17	2	1.80	34.3	46

DISSEMINATION OF NEWLY IMPROVED VARIETIES OF PANIKACHU

Materials and Methods

The study was conducted at the MLT site, Keshobpur, Jessore and Jhenaidah to compare the improved varieties with local one. The experiment was laid out in RCBD with 3 replications. The unit plot was 10 m x 10 m. The seedlings were planted on 5 February, 2002 maintaining the spacing of 60 x 45 cm. Fertilizers were applied at the rate of 15 ton cowdung and urea, TSP, MP: 150-125-175 kg/ha. All fertilizers except urea were applied during final land preparation and urea was applied in two equal splits at 30 DAT and 60 DAT. Irrigation and weeding were done as and when necessary. Harvesting continued from 1st week of April to 3rd week of October. Data on plant height, length of stolen, number of stolen/plant, weight of stolen/plant and yield (t/ha) were recorded.

Results and Discussion

Results were presented in the Table 1. The variety Latiraj produced the highest yield (36.79 t/ha) at Jhenaidah MLT site and it was 29.37 t/ha at MLT site Keshobpur. In the both locations local variety produced the lower yield compared with latiraj. The yields of local variety were 20.56 and 22.32 t/ha at Keshobpur and Jhenaidah MLT site respectively. Higher yield from latiraj was due to higher yield contributing characters.

Farmers' reaction

Farmers express their satisfaction with more yields of latiraj and they are interested to grow it for its high market price and demand.

Table 1. Performance of yield and y	yield contributing characters of Panikachu at MLT site, Keshobpur
and Jhenaidah during 2002	2-03

Locations	Variaty	Plant height	Length of	Stolen/plant	Wt. of stolen/	Yield
Locations varie		(cm)	stolen (cm)	(no.)	plant (kg)	(t/ha)
Keshobpur	Latiraj	91.35	57.85	28.25	1.160	29.37
	Local	110.2	52.18	17.32	0.858	20.56
Jhenaidah	Latiraj	96.46	59.65	30.59	1.495	36.79
	Local	114.20	49.32	20.15	0.985	22.32

DISSEMINATION OF NEWLY IMPROVED VARIETIES OF MUKHIKACHU

Materials and Methods

The study was conducted at the MLT site, Keshobpur, and Jhenaidah, Jessore during 2002-2003 to compare the improved variety of Mukhikachu with farmer's own. The experiment was laid out in RCBD with 4 replications. One improved variety Bilashi was tested along with local variety at the both MLT site. The unit plot was 10 m x 10 m. The seeds were sown on 22 April, 2002 maintaining the spacing of 60 cm x 45 cm. Cowdung 15 ton and urea, TSP: 150-125-175 kg/ha were used. All fertilizers except urea were applied during final land preparation and urea were applied in two equal splits at 40 DAS and 90 DAS. Weeding, irrigation, earthing up was done as and when necessary. The crop was harvested on 25 October, 2002. Data on plant height, number of cormel/plant, weight of cormel/plant and yield t/ha were recorded.

Results and Discussion

Results were presented in the Table 1. It shows that the variety Bilashi is superior to local variety at the both the site considering yield and yield attribute. The highest yield (25.89 and 30.82 t/ha) was obtained from Bilashi at Keshobpur and Jhenaidah, MLT site, respectively. Local variety produced the lowest yield 17.84 t/ha at Keshobpur and 16.50 t/ha at Jhenaidah, MLT site.

Farmer's reaction

Farmer's are very much interested to grow the Mukhikachu variety Bilashi for its higher yield and market price.

Table	1.	Performance	of yield	and	yield	contributing	characters	of	Mukhikachu	at	MLT	site,
		Keshobpur a	nd Jhenai	dah d	uring 2	2002-03						

Locations	Variety	Plant height (cm)	Length of cormel /plant	Wt. of cormel/ plant (kg)	Yield (t/ha)
Keshobpur	Bilashi	68.50	26.39	0.575	25.89
_	Local	57.32	23.29	0.465	17.84
Jhenaidah	Bilashi	70.53	28.26	0.869	30.82
	Local	59.45	21.60	0.410	16.50

ADAPTIVE TRIAL OF DEVELOPED AND ADVANCE LINES OF GROUNDNUT AT

FARMERS' FIELD

Abstract

The experiment was conducted at farmers' field at Cox's Bazar during November 2002 to April 2003 to evaluate to the performance of developed and advanced lines and local of. (ICGV 89259, BARI Badam 6, Dhaka -1) were tested. The line ICGV 89259 and BARI Badam 6 showed the best performance in context of yield.

Introduction

BARI has released a number of groundnut varieties and an advanced line was found suitable. These developed and advance lines need to disseminate among the farmers at different locations. Hence the proposed study was taken in hand to compare these with local one at Cox's Bazar in Chittagong region.

Materials and Methods

The experiment was conducted at farmers field at Cox's Bazar of Chittagong region during November 2002 to April 2003 to evaluate the performance of some varieties/line (ICGV89259, BARI Badam 6, Dhaka-1) of groundnut under farmers' condition. and local were tested. The experiment was conducted in RCB design with five dispersed replications. The groundnut varieties were sown at 19-23 November 2002 and harvested 16-20 April 2003. The unit plot was 50 m² with spaced 30 cmx15c m. Fertilizer dose was 10:70:50:30:4:2 kg/ha NPKSZn and B, respectively and applied as basal. Data on number of nut per plant, weight of nut per plant and nut yield on 10m² area basis and analysed statistically.

Results and Discussion

Yield and yield attribute of groundnut were presented in Table 1. Significantly the highest number of nut per plant was found in ICGV89259. The lowest nut/plant was obtained from local one. Similar trend was obtained in case of weight of nut/plant. The line ICGV 89259 showed higher seed yield but statistically identical to BARI Badam 6. The 36 line ICGV 89259 showed the highest yield due to nut/plant and nut weight/plant.

Farmers reaction

Farmer were very much encourage to see the performance of ICGV 89259 and BARI Badam 6. The experiment need to be repeated another year trial.

Variety	Nut/plant (no.)	Nut weight/plant (g)	Nut yield (t/ha)
ICGV89259	41.67a	64.53a	2.61a
BARI Badam-6	36.77b	60.67b	2.41a
Dhaka-1	31.37c	41.07c	1.41b
Local	27.53d	39.87c	1.19b
CV (%)	7.5	6.7	7.6
LSD (0.05)	2.15	1.92	0.56

Table 1. Nut yield and yield contributing characters of groundnut conducted at Cox's Bazar in 2002-03

DISSEMINATION OF NEWLY IMPROVED VARIETIES OF SWET POTATO

Abstract

The experiment was conducted a farmer's field at Cox's Bazar during November 2002 to April 2003 to disseminate BARI released improved varieties by comparing with farmer's local. Tripti, Kamlasundari, Daulatpuri, BARI SP-5 sweet potato varieties were tested with farmers local. Significantly highest yield (23.4 t/h) was obtained from variety Kamlasundari but this variety did not like farmer due to less taste. In this case BARI SP-5 showed second highest yield but farmers prefer due to more taste.

Introduction

BARI has released a number of sweet potato varieties. These varieties need to disseminate among the farmers at different location. Hence the proposed study was taken in hand to compare BARI released improved sweet potato varieties with farmer's local at Cox's Bazar in Chittagong region.

Material and methods

The experiment was conducted at farmer's field at Cox's Bazar of Chittagong region during November 2002 to April 2003 to disseminate BARI released improved sweet potato varieties with farmer's local. Tripti, Kamlasundari, Daulatupuri and BARI SP-5 sweet potato varieties were tested with farmer's local. The experiment was conducted in a RCB design with five dispersed replications. The sweet potato varieties were planted at 26-28 November 2002 and harvested at 25-30 April 2003. The unit plot was 50m² with spaced 60 x 30 cm. Urea, TSP and MP were applied at the rate of 160 g, 130 kg and 190 kg per hectare. Entire TSP and MP were applied during final land preparation. Half of urea was applied as basal and the rest half was applied at 60 days after planting. Data on number of tuber per plant, weight of tuber per plant and tuber yield on whole plot basis and analysed statistically. Farmers reactions also recorded.

Result and Discussion

Yield and yield attributes of sweet potato varieties were presented in Table 1. Significantly the highest number of tuber per plant was obtained from Kamlasundari. Similar trend was followed in case of tuber weight/plant. Local variety showed lowest tuber weight/plant among the variety. Significantly the highest yield was recorded from Kamlasundari due to the highest no. of tuber/plant and weight of tuber/plant. Second highest yield was recorded from variety BARI SP-5 but statistically at par to local but farmer prefer BARI SP-5.

Farmers reaction

Kamlasundari was less tasty, very clody after boiling. For this reason farmer did not like this type variety though highest yielder but farmers accepted BARI SP-5 due to more tasty. No major insect infestation and disease infection were found.

Variety	Tuber/plant (no.)	Tuber weight/plant (kg)	Tuber yield (t/ha)
Tripti	3.14	0.84	17.71
Kamlasundari	3.56	1.41	23.40
Daulatpuri	2.44	0.90	14.52
BARI SP-5	3.04	1.03	19.21
Farmer's local	3.02	0.97	18.34
CV(%)	11.31	9.87	8.6
LSD(0.05)	0.41	0.42	2.14

Table 1. Tuber yield and yield attributes of sweet potato varieties at Cox's Bazar in 2002-2003.

INTEGRATED FARMING

The subsistence farms of Bangladesh are highly diversified with complex relationships among the various sub-systems and the enterprises within a sub-system. While there are different production alternatives, farmers have a limited set of resources. These resources must be utilized in such a manner that maximizes farm productivity, farmer's benefit and resource use efficiency in an environmentally sound and sustainable way. A holistic approach to technology generation and packaging is essential to achieve this result through maximizing the complementary interactions among the different farming enterprises/ production system and the biophysical and socio-economic environment.

In this endeavor, an effort is being made to package the available proven technologies of the component sub-systems in whole farm perspectives to develop integrated farming system modules for different environment and clientele groups to improve whole farm system operation to maximize farm productivity, farmers' income and farm resource use efficiency as well as for eventual transfer of these modules to the target farmers since the last few years of BARI's FSRD program.

Methodology

As the effort of packaging and testing technologies for developing integrated farming practices for highly complex and subsistence livelihood system in whole farm perspective is new, there is no recommended methodology for such studies. Accordingly, a 5-step new methodology being developed through an evolutionary process of trial and error using the experiences of FSRD practitioners of OFRD, BARI was adopted.

- Step 1. Identification of proven/recommended technologies: A comprehensive list of all packages of recommended technologies of crops, livestock, fisheries and other components of the farming system for specific location/environment was prepared to help selection of appropriate technologies for intervention.
- Step 2. Selection of farmer Cooperator: The cooperator farmers representing small and marginal farmers with farming as major profession, having major components of farming and sizable homestead under single ownership were selected at each site. The number of farmers selected at different sites ranged from two to more than 10.
- Step 3. Accounting of pre-intervention status: The pre-intervention status of the selected farms was evaluated through case studies/surveys. In the process, the existing farm resources, assets, liabilities, present use of resources, existing farming practices and technologies used, level of input use and outputs obtained, performances of different enterprises, farm income and expenditure status, etc. was assessed for each farm.
- Step 4. Analysis of existing system and selection of technologies for intervention: Based on the preintervention status, the system performance was analyzed in the context of existing biophysical and socio-economic environment of the farm and constraints and potentials were identified. To ensure maximum utilization of existing farm resources, alternate/new packages of technologies for different enterprises of all components of the farm were identified and finally selected on the basis of farmers' option. The number of new technologies/practices taken for intervention for different sub-systems varied from farm to farm depending on farmers' option and perceived potentials of the technologies. It may be mentioned that in the intervention plan, some of the farmer's earlier adopted practices were retained while some practices. new practices replaced the traditional То use unexploited the resources/opportunities, a large number of new practices were also included.

Step 5. Implementation of intervention and performance evaluation: After finalizing the proposed interventions, the farmers were motivated through all possible ways to utilize their own resources to adopt the interventions. However, in implementing some new technologies, a few critical inputs were provided free of cost and/or on credit. Throughout the entire period of implementation, regular technical support was provided on as and when necessary basis and the performance of different interventions were monitored regularly and necessary data were collected directly using standard methods.

During the reporting year, the study was continued for the 3rd-4th year with 12 farmers at Goyeshpur site, Pabna, four farmers at Narikeli site, Jamalpur, four farmers at Palima site, Tangail, three farmers at Lebukhali site, Patuakhali and one farmer at Golapganj site, Sylhet. While elaborate development program in integrated whole farm approach was undertaken involving scores of farmers at each of Syedpur site, Rangpur, Chobbishnagar site, Barind, Ishan Gopalpur site, Faridpur and Atkapalia site, Noakhali.

Result and Discussion

Twenty-five farms at in 9 FSRD sited have been intervened for a period of 1-3 years each. From each farm, a tremendous volume of data has been generated for both pre-intervention and intervention periods. Since each farm is unique in its own setting and resource use practices in both pre-intervention and intervention periods, it is virtually impossible, and perhaps, useless to attempt any systematic statistical analysis to compare the performance of different farms. Accordingly an attempt has been made to view each farm separately and system performance of pre-intervention and intervention and intervention and other relevant parameters. In the following section, the result obtained at different sites will be presented.

The studies at all sites revealed that an individual farm consist of several resources like homestead, cropland, ponds, livestock, poultry and fisheries etc. Before intervention, these resources were not utilized properly for production purposes. But after proper motivation and introduction of several alternatives for each production units, the farmers adopted several new technologies according to their goals, preferences and availability of resources. The farm productivity, income, employment opportunity of the existing farming improved tremendously due to integration of technologies through holistic approach which led to improved livelihoods at all locations. The summary of findings at different sites is briefly presented below. From each farm, a tremendous volume of data has been generated for both pre-intervention and intervention periods. Since each farm is unique in its own setting and resource use practices in both pre-intervention and intervention and intervention periods, it is virtually impossible, and perhaps, useless to attempt any systematic statistical analysis to compare the performance of different farms. Accordingly an attempt has been made to view each farm separately and system performance of pre-intervention and intervention periods have been compared to asses the impact of interventions on farm productivity, income and employment generation and other relevant parameters. In the following section, the result obtained at different sites will be presented.

290

Narikeli FSRD Site, Jamalpur

Ten farmers, representing the marginal and small category were brought under whole farm intervention at the site during late nineties. However, the intervention continued with four farms during the reporting year due to funding constraints.

Technologies/Practices used for Intervention

As in other sites, a large number of recommended technologies for field crop production, homestead farming, livestock and fish production were included for intervening the farms (Table 1). However, depending on resources availability, the number of technologies adopted by a specific farm varied widely. The overall productivity of important technologies is presented in Table 2.

Table 1. List of interventions by sub-systems used in integrated farming studies at Narikeli site, Jamalpur

Crop Subsystem

- 1. T. Aman- BRRI Dhan 32 instead of Pajam
- 2. Wheat- Kanchan, Shourab, Ghourab instead of Sonalika
- 3. Mustard- BARI Sarisha-8, Tori-7 instead of local
- 4. Boro BRRI Dhan-29, BRRI Dhan-28, BR-11 instead of local

Homestead Subsystem

- 1. White gourd on roof
- 2. Sweet gourd on roof
- 3. Bitter gourd on the fence
- 4. Sweet gourd on trail's
- 5. Indian spinach on trail's
- 6. Bottle gourd on pond trails (BARI Lau-1)
- 7. Mukhi kachu in partial shade area
- 8. Turmeric in partial shade area
- 9. Zinger in partial shade area
- 10. Kachu in waste land-(Latiraj)
- 11. Potato Yam on the Homestead trees (Ziga, Mandar, Drumstick,
- 12. Jujube, Betel nut, Coconut, mango and also on bamboo support)
- 13. BARI Shim-1, BARI Lau-1 on the trail's

Homestead trees

- 1. Mango hopper control, management and fertilization practices of different fruit trees
- 2. Fertilization and water management in Betel nut, Coconut, Guava and Jackfruit
- 3. Top working of Jujube
- 4. Mango hopper and parasite control
- 5. New plantation of mango (Khirshapati, Gopalbogh, Langra, Fazli, BARI mango-3, BARI mango-4), Litchi (China-3), Guava (BARI Guava-1 and 2), Sofeda, Seedless Lemon, Drumstick, Coconut, Betel nut, Kamranga, Neem, Papaya, Pome granite, Amra, Amloki, Sarifa, Tissue cultured jackfruit and banana, Mahogany

Livestock Subsystem

- 1. Deworming of cattle
- 2. Vaccination of poultry
- 3. Rearing of poultry (broiler and layer)
- 4. Introduction of goat

Adoption of Technologies

All the farms adopted quite a large number of technologies. A list of the technologies used during intervention and pre-intervention periods is shown in table 2.

 Table 2: Technologies used during the pre-intervention and intervention periods in different subsystems at FSRD Site, Narikeli, Jamalpur

Resource	Pre-intervention period	During intervention period
A. Homestead		
Open land	Bottle gourd, Country bean (Local)	Tomato, Cauliflower, BARI Dherosh 1, Lalshak, Carrot, BARI Lau 1, BARI Shim 1, Data, Spinach, Onion, Garlic, Green piper, White gourd, Sweet gourd
Roofs	None	Potato Yam, BARI Shim 1, BARI Lau 1
Trellis	Bottle gourd, Country bean (Local)	Potato Yam, BARI Shim 1, BARI Lou 1, Betel vine
Creeper vegetable on tree support	None	Potato yam, Betel vine
Fence	Not used	Bitter gourd, Potato Yam, Rib gourd, Cucumber
House boundary	Betel nut, Coconut, Banana, Drumstick	Mango (Amrapali, Khirshapati, Gopal bogh, Langra, Fazli, BARI mango-3, BARI mango-4), Litchi (China-3), Guava (BARI Guava-1 and 2), Safeda, Seedless Lemon, Kamranga, Neem, Orboroi, Papaya, Dalim, Amra, Sarifa, Mahoginy
Tree improvement	None	Coconut & betel nut management, Jujube budding, Hopper and parasite control of mango,
B. Fishery system		
Backyard ditch	Not used	Seasonal fish culture
Perennial pond	Cattla, Roi, Mrigel	Grass carp, Sharpunti, Silver carp, Katla, Roi, Mrigel
C. Livestock	Cow (Local), Poultry (Local)	Poultry (Foumi, Sonali, Hisex brown)
Cooking	Traditional Chula	BARI Chula
Sanitation and health	Traditional latrine	Sanitary latrine, cleaning the homestead area

Farm Productivity and Income

The overall productivity of technologies used for intervention was much higher than the conventional practices of the farmers (Table 3). There was a tremendous impact of the interventions on the diversification and increase production of commodities in all the four farms intervened due to both horizontal and vertical increase in production due to adoption of improved technologies and addition new production enterprises (Tables 4-7).

Resource	Before intervention	on	After intervention	Remarks		
	Variety/item	Yield (t/ha)	Variety/item	Yield (t/ha)		
T.Aman	Pajam	2.44	BRRI Dhan 32,	4.52,		
			BRRI Dhan 33	4.12		
Boro	BR 14	3.95	BR 28, 29	4.30, 6.00		
Jute	Local	1.29	O-9897	2.59		
Homestead	White gourd	19 N	Local	28 N/pit	Proper	
	Bottle gourd	16 N	BARI Lau-1	51 N/pit	nutrient and	
	Sweet gourd	12 N	Snake gourd	16 kg/pit	management	
	-	-	Pointed gourd	18 kg/pit		
	-	-	Cucumber	16 kg/pit		
	-	-	Bitter gourd	15 kg/pit		
	-	-	Indian spinach	21 kg/pit		
Partial shady	-	-	Turmeric	16 kg/dec		
area	-	-	Zinger	17 kg/dec		
	-	-	Mukhi kachu	21 kg/dec		
	-	-	Elephant Taros	22 kg/dec		
Trellis	-	-	Potato yam	12 kg/pit		
	-	-	BARI Shim-1	10 kg/pit		
Ponds	-	-	White gourd	20 N		
surroundings	-	-	Bottle gourd	40 N		
Livestock	Ox (Trad)	40 kg/ox	Ox (imprv)	80 kg	Meat/ox/year	
	Local hen	33 N egg	Exotic	200 N egg	N/hen/year	
Fisheries	eries Pond (Trad) 18 kg		Mixed culture	40 kg	3 dec/year	

Table 3. Productivity of different technologies before and after intervention at FSRD site, Narikeli, Jamalpur

Table 4. Details of farm productivity and returns by intervention of integrated farming (Farmer 1: Md. Abdul Khaleque) at FSRD site, Narikeli, Jamalpur.

A.	Crop
----	------

Resource	Area	Before intervention				After intervention					
		Pattern	Prod.	TVC	GM	Pattern used	Prod.	TVC	GM	Increase	
			(kg)				(kg)			net return	
MHL-1	26 d	Aman (Pajam)	220	800	1000	Aman (BR 32)	350	1400	1025		
		Boro (BR 14)	300	1300	700	Boro (BR 28)	400	2000	1175		
Sub-Total				2100	1700			3400	2200	500	

B. Homestead

Resource	esource Area Before intervention					After intervention					
		Practice used	Prod.	TVC	GM	Practice used	Prod.	TVC	GM	Increa	
			(kg)	(Tk)	(Tk)		(kg)	(Tk)	(Tk)	se net	
										return	
Roof	2 d	White gourd	35 N	60	200	Sweet gourd	25 N	115	495		
						White gourd	50 N				
Trail	1 d	Bottle gourd	17 N	120	116	Snake gourd	12	205	255		
		Sweet gourd	12 N			Pointed gourd	18				
						Cucumber	16				
						Bitter gourd	15				
Open field	4 d	Not cultivation	-	-	-	Homestead	90	195	410		
						model					
Partial	2 d	Not cultivation	-	-	-	Turmeric	26	135	350		
shade area						Ginger	3				
						Mukhi khakhu	7				
Waste land	2 d	Not cultivation	-	-	-	Kachu (Latijaj)	52	175	350		
On support	1 d	Not used	-	-	-	Potato yam	35	175	400		
						BARI shim	29				
Sub. Total	12 d	-	-	180	316			1000	2260	1944	

C. Livestock

Resource	Before intervention					After intervention				
	No	Practiced	Prod.	TVC	GM	No.	Practiced	Prod.	TVC	Increase net
			(kg)	(Tk)	(Tk)			(kg)	(Tk)	return
Hen (L)	6N	No	Egg	215	166	-	-		-	
		Vaccination	153 N							
Hen							Vaccination			
(Improve)	-	-	-	-	-	10 N	and feeding	1500	2000	
Ox	1	Normal	Meat	2185	989		Dewarming	Meat	3000	
		feeding	48 kg				UMS diet	82 kg		
Sub-Total				2400	1155				5000	4345
Table 5. Details of farm productivity and returns by intervention of integrated farming (Farmer 2: Ranju Fakir) at FSRD site, Narikeli, Jamalpur.

A. Crop

		Be	fore int	erventic	n			Afte	r interve	ention		
Resource	Area	Pattern used	Prod. (kg)	GR	TVC	GM	Pattern used	Prod. (kg)	GR	TVC	GM	Increase net return
MHL-1	13 d	Aman (Pajam)	125	1120	550	570	Aman (BR 32)	210	1560	650	910	
		Boro (BR 14)	170	1190	600	590	Boro (BR 29)	280	1960	900	1060	
Sub-Total				2310	1150	1160			3520	1550	1970	810

B. Homestead

		Before in	ntervent	tion (9	9-2000)			After	r interver	ition		
Resource	Area	Practice used	Prod. (kg)	TR (Tk)	TVC (Tk)	GM (Tk)	Practice used	Prod. (kg)	TR (Tk)	TVC (Tk)	GM (Tk)	Increas e net return
Roof	2 d	White gourd	20N	160	45	115	Sweet gourd White gourd	23 N 34 N	665	260	405	
Trellis	1 d	Bottle gourd	8 N	65	30	35	Snake gourd Sweet gourd Pointed gourd Cucumber	18 13 17 18	620	185	435	
Open field	5 d	Not cultivation	-	-	-	-	Homestead model	95	760	290	470	
Partial shade area	1 d	Not cultivation	-	-	-	-	Turmeric Ginger Elephant taro	12 3 25	705	270	435	
On support	2 d	Not used	-	-	-	-	Potato yam BARI shim	90 60	1350	195	1155	
Sub. Total	11 d	-	-	225	75	150			4100	1200	2900	2750

C. Livestock

			Before in	terventio	n				Afte	r interver	ntion		
Resource	No	Practiced	Prod. (kg)	GR (Tk)	TVC (Tk)	GM (Tk)	No	Practiced	Prod. (kg)	GR (Tk)	TVC (Tk)	GM (Tk)	Increas e net return
Hen (L)	6	No Vaccination	Egg 185	536	220	316	10	Vaccination and feeding	Egg 1500	4350	1660	2690	
Ox	1	Normal	Meat	2714	1960	754	1	Dewarming	Meat 82	8050	5340	2710	
		feeding	38 kg				Ν	UMS diet	kg				
Sub-Total				3250	2180	1070				12400	7000	5400	4330
Off-Farm		-		1000	400	600		-	-	1600	500	1100	500
activities													

Table 6 Details of farm productivity and returns by intervention of integrated farming Farmer 3: Md. ShamsulHaque Akanda) at FSRD site, Narikeli, Jamalpur.

A. Crop												
		B	efore in	terventio	n			Afte	er interve	ntion		
Resource	Area	Pattern used	Prod. (kg)	GR	TVC	GM	Pattern used	Prod. (kg)	GR	TVC	GM	Increase net return
MHL-1	26 d	Aman (Pajam) Boro (BR 14)	250 320	2000 2240	800 1100	1200 1140	Aman (BR 32) Boro (BR 28)	350 350	2800 2450	1200 1425	1600 1025	
Total				4240	1900	2340			5250	2625	2625	
MHL-2	26 d	Aman (BR 11) Boro (BR 14)	350 390	2450 2750	1250 1150	1200 1600	Aman (BR 32) Boro (BR 29)	340 370	2720 2580	1225 1400	1495 1180	
Total				9440	4300	5140			10550	5250	5300	160

B. Homestead

		Be	fore inte	erventi	on			Af	ter interv	ention		
Resource	Area	Practice used	Prod. (kg)	GR (Tk)	TVC (Tk)	GM (Tk)	Practice used	Prod. (kg)	TR (Tk)	TVC (Tk)	GM (Tk)	Increase net return
Roof	4 d	White gourd	45	360	90	270	Sweet gourd White gourd	42 65	825	450	375	
Trellis	2 d	Bottle gourd Sweet gourd	30 15	240	80	160	Snake gourd Pointed gourd Cucumber Bitter gourd	32 29 44 14	850	460	390	
Open field	6 d	Not cultivation	-	-	-	-	Homestead model	200	1600	450	1150	
Partial shade area	4 d	Not cultivation	-	-	-	-	Turmeric Ginger Elephant taro	35 4 30	845	340	505	
Waste land	4d	Not cultivation	-	-	-	-	Kachu s(latiraj)	115	675	180	495	
Ponds surrounding	2 d	Not used	-	-	-	-	White gourd Bottle gourd BARI Shim-1	32 38 20	745	600	145	
On support	4 d	Not used	-	-	-	-	Potato yam BARI Shim-1	35 35	670	520	150	
Sub. Total	44 d	-	-	600	170	430			6210	3000	3210	2780

C. Livestock

			Before inte	ervention					Afte	er interve	ntion		
Resource	No	Practiced	Prod. (kg)	GR (Tk)	TVC (Tk)	GM (Tk)	No	Practiced	Prod. (kg)	GR (Tk)	TVC (Tk)	GM (Tk)	Increa se net return
Hen (L)	5	No Vaccination	Egg 200	580	250	330	2	Vaccination	Egg 100	290	150	140	
Hen (Improve)	-	-	-	-	-	-	5	Vaccination and feeding	Egg 600	1740	450	1290	
Duck (L)	4	No vaccination	Egg 140	350	280	70	4 N	Vaccination and feeding	Egg 225	562	320	242	
Ox	2	No UMS diet	Meat 95 kg	6150	3810	2340	2 N	Dewarming UMS diet	Meat 137 kg	8918	2600	6318	
Sub-Total				7080	4340	2740				11510	3520	7990	5250
Pond	6 d	Traditional	35 kg	1500	800	700	6 d	Mixed culture	75 kg	3000	850	2150	1450

Table 7. Details of farm productivity and returns by intervention of integrated farming (Farmer 4. Md. AbuTaleb) at FSRD site, Narikeli, Jamalpur.

		E	Before inte	rvention				Aft	er inter	vention		
Resource	Area	Pattern used	Prod. (kg/plot)	GR	TVC	GM	Pattern used	Prod. (kg)	GR	TVC	GM	Increase net return
MHL-1	45d	Aman (Pajam) Jute (local)	310 275	2480 2765	1050 1250	1430 1515	Aman (BR 32) Boro (BR 28)	326 345	2280 2415	960 1110	1320 1305	
MHL-2	50d	Aman (Pajam) Boro (BR 14)	315 385	2520 2695	1100 1400	1420 1295	Aman (BR 32) Boro (BR 28)	345 350	2415 2450	980 1100	1435 1350	
Sub-Total				10460	4800	5660			9560	4150	5410	-250

B Homestead

		В	efore inte	rventic	n			After	interver	ition		
Resource	Area	Practice used	Prod. (kg)	GR (Tk)	TVC (Tk)	GM (Tk)	Practice used	Prod. (kg)	GR (Tk)	TVC (Tk)	GM (Tk)	Increase net retur
Roof	2 d	White gourd	16	100	32	68	Sweet gourd White gourd	22 N 40 N	696	165	531	
Trellis	1 d	Bottle gourd Sweet gourd	26 10	165	90	75	Snake gourd Pointed gourd Cucumber Bitter gourd Indian spinach	26 21 28 18 26	1300	860	440	
Open field	2 d	Not cultivated	-	-	-	-	Homestead model	70	660	180	480	
Partial shade area	1 d	Not cultivated	-	-	-	-	Turmeric Ginger Mukhi khakhu Elephant font	20 4 21 30	780	360	420	
Ponds surroundings	1 d	Not used	-	-	-	-	White gourd Bottle gourd	25 40 N	550	320	230	
On support	1 d	Not used	-	-	-	-	Potato yam BARI shim	45 35	1234	345	889	
Sub. Total	8 d	-	-	265	122	143			5220	2230	2990	2847

C. Livestock and Fishery

		В	efore in	iterventi	on					After i	nterven	tion	
Resource	No	Dracticod	Prod.	GR	TVC	GM	No	Dracticod	Prod.	GR	TVC	GM	Increase net
		Practiced	(kg)	(Tk)	(Tk)	(Tk)		Practiced	(kg)	(Tk)	(Tk)	(Tk)	return
Hen (L)	4	No	Egg	464	200	264	2	Vaccination	Egg	406	220	186	
		Vaccination	160						140				
Hen													
(Improve)		-	-	-	-	-	8	Vaccination	Egg	3480	500	2980	
								and feeding	1200				
Ox	1	Normal	Meat	2633	1920	713	1	Dewarming	Meat	5344	2430	2914	
		feeding	40					UMS diet	85 kg				
Sub-total				3097	2120	977				9230	3150	6080	5103
Pond	3 d	Traditional	8	400	310	90	3 d	Mixed	80	4000	500	3500	3410
		practice						culture					
		-											
Off-farm	1 N	-	-	2000	500	1500	1N	-	-	3000	1000	2000	500
activities													

The overall farm income in every subsystem increased remarkably. The combined net benefit increaseper farm ranged from 99-253% (Table 8).

		Be	fore intervent	tion	Af	ter interventi	on	Increase net
Farmer	Resource	GM (Tk)	TVC (Tk)	Net return (Tk)	GM (Tk)	TVC (Tk)	Net return (Tk)	return
Abdul	Crop	3800	2100	1700	5600	3400	2200	500
Khaleque	Homestead	496	180	316	3260	1000	2260	1944
	Livestock	3555	2400	1155	10500	5000	5500	4345
	Total	7851	4680	3171	19360	9400	9960	6789 (214%)
Ranju	Crop	2310	1150	1160	3520	1550	1970	810
Fakir	Homestead	225	75	150	4100	1200	2900	2750
	Livestock	325	2180	1070	12400	7000	5400	4330
	Off-farm activities	1000	400	600	1600	500	1100	500
	Total	6740	3805	2935	21620	10250	10370	7435 (253%)
Shamsul	Crop	9440	4300	5140	10550	5250	5300	160
Haque	Homestead	600	170	430	6210	3000	3210	2780
Akanda	Livestock	7080	4340	2740	11510	3520	7990	5250
	Fisheries	1500	800	700	3000	850	2150	1450
	Total	18620	10620	8000	28570	12620	15950	7950 (99%)
Abu	Crop	10460	4800	5660	9560	4150	5410	-250
Taleb	Homestead	265	122	143	5220	2230	2990	2847
	Livestock	3097	2120	977	9230	3150	6080	5103
	Fisheries	400	310	90	4000	500	3500	3410
	Off-farm activities	2000	500	1500	3000	1000	4000	2500
	Total	16222	7852	8370	31010	11030	19980	11610 (138%)

Table 8. Cost and returns from different subsystems of integrated farming of medium farms at FSRD site Narikeli, Jamalpur

Impacts on labour utilization and family welfare

Use of family labour increased (women 75%, children 10% and male labour 15%) increased due to huge intervention of technologies in integrated farming. More participation of women in agricultural activitiesmade positive impact on gender equity issues within the family and the community as a whole. It was observed that increased farm production and income together with motivation with new knowledge and skills improved the livelihood in all the farms intervened.

	Assots		Living st	andard		Children	
Name	developed	Food	Living condition	Sanitation	Medicare	education	Savings
Md. Abdul Khaleque	Buying of 2 calves, improvement of kitchen room by fencing, roof with tin and earth working	Better intake of vegetables	Increase social acceptance	Use of hygienic sanitary latrine	Better health care	Daughter- Married Son- Married (Service) Son- Class IX Daughter- Baby	Loan repaying
Md. Ranju Fakir	Improvement of kitchen, development of homestead area by earth working	Better intake of vegetable, fishes, egg and fruits	Increase social status due to economic upliftment	Use of hygienic sanitary latrine	Better health care	Daughter KG - I Son- Baby	Loan repaying
Md. Shamsul Haque Akanda	Improvement of residence by tin in lieu of thatching material	Intake of vegetable, fruits, milk, meat and egg	Better social acceptance	Use of sanitary latrine	More conscious about health care	Daughter- Married Son- Agriculture	Savings in Bank
Abu Taleb	Improvement of dwelling house by tin replacing thatched house, buying of new land	Better intake of vegetable, fish, egg fruits	Increasing social status due to economic upliftment	Use of hygienic sanitary latrine	Better health care	Daughter- KG I Son- Baby	Loan repaying

Table 9. Impacts of integrated farming intervention	on the improvement of the livelihood systems at
FSRD sire, Narikeli, Jamalpur	

Goyeshpur FSRD Site, Pabna

Twelve farms, four from each of marginal, small and medium category were intervened under integrated farming study at Goyeshpur FSRD site, Pabna during 2002-03 with a view to maximize the utilization of all available farm resources, farm productivity and income. The results of intervention with improved technologies/practices as compared to the pre-intervention period is presented below:

Use of technologies/improved practices

The number of improved technologies/practices used to replace the old practices and introduce new enterprises varied greatly among and within the farm categories. The specific technologies adopted by a farm depended on the farmers' preferences and availability of resources. Thus the number of technologies adopted by different farms varied. A comprehensive list of the technologies used is presented in Table 1.

Resourc	es		Technologies for intervention		
A. Home	stead: New year round ve	getable model			
Open	land Bed 1	:	Radish (Tasaki)-Stem amaranth (LIV)- Indian spinach		
	Bed 2	:	Cabbage (Atlas 70) - Brinjal - Red amaranth		
	Bed 3	:	Tomato (Raton) + Spinach – Okra (BARI Dheros 1)		
Roofs		:	Bottle gourd (BARI Lau 1) – White gourd		
Trellis		:	Bottle gourd (BARI Lau 1) - Sweet gourd		
Trees	(fruitless)	:	Potato yam/Country bean/Sponge gourd		
Partia	ly shady area	:	Elephant foot yam, Leaf aroid, Ginger		
Marsh	y land	:	Water taro		
Fence			Bitter gourd, Yard long bean		
House	boundary	:	Papaya, Lemon, Guava		
Back	yard	:	Laizna, Plantain banana		
Other de	velopment activities of the	homestead:			
Exist	ing trees	:	Manuring, fertilization, pest control, irrigation, drainage, top working of fruit and forest species.		
New	plantation of HY varieties	:	Mango, Litchi, Pumelo		
Graft	ing nursery for HYV fruit t	rees :	Grafting of mango/Litchi/Jujube seedling		
Environment friendly cooking oven		ven :	BARI cooking oven		
Use of organic wastes for cooking, lighting		ing, lighting :	i. Biogas plant with cattle/poultry excreta		
and u	se as fertilizer		ii. Composting with house waste		
Seed	preservation	:	Using scientific method for seed preservation		

Table 1: Improved/ recommended technologies used for integrated farming systems at FSRD Site, Goyeshpur, Pabna

B. Pond (perennial & seasonal)	\Rightarrow Polyculture of Pangas and crap fish
	⇒ Monoculture of Pangas
	⇒ Integrated poultry/duck-cum-fish + vegetables production
	\Rightarrow Polyculture of carp fish
	\Rightarrow GIF Tilapia in ditch or seasonal pond
	\Rightarrow Fingerling production of different fish species
C. Livestock:	⇒ Broiler production
	⇒ Bull fattening
	⇒ Milking cow rearing
	⇒ Pigeon rearing
	⇒ Layer (HYV) rearing (Improved breed)
	⇒ Goat rearing
D. Crop land:	
Resources	Technologies for intervention
i. High land :	Carrot (Hybrid new coruda) - Sesame (HYV) - T.Aman (BRRIDhan32)
	Bulb Onion (HYV) - Mungbean (HYV) - T.Aman (BRRIDhan31)
	Papaya (LIV) - (Two year cycle)
	Mustard (BARI-8) - Mungbean (BINA 5) - T.Aman (BRRIDhan33)
	Lentil (BARI-4) - Jute (O-9897) - T.Aman (BRRIDhan31)
	Cauliflower (White contesa) - Sweet gourd - Red amaranth
	Cabbage (Atlas 70) - Lady's finger (BARI-1) - Red amaranth
	Tomato (Raton) - Bitter gourd (LIV) - Red amaranth
	Spinach (Kupi) - White gourd (IPSA) - Red amaranth
	Bottle gourd (BARI 1) Bitter gourd (LIV) - with or without trellis
ii. Medium high land :	Wheat - GM - T.Aman (BRRIDhan31)
	Maize (Hybrid) - GM - T.Aman (BRRIDhan32)
	Mustard (BARI-8) - Jute (O-9897) - T.Aman (BRRIDhan31)
	Onion (BARI 1) - Sesame (T6) - T.Aman (BRRIDhan31)
	Grass pea - Jute (O-9897) - T.Aman (BRRIDhan32)
iii. Medium lowland :	Boro (BRRIDhan29) - Fallow T.Aman (BR11)
	Boro (BRRIDhan29) - Fallow - T.Aman (BRRIDhan31)

Farm Resource Utilization

During the pre-intervention period, most of the farms had serious underutilization of available resources for productive/income generating purposes. But during the intervention period the farmers introduced several alternatives practices and new enterprises in almost all farming subsystems. This led to full utilization of both physical and other farm resources available in the disposal of the farm and mobilized resources for food security, income generation and improvement of livelihoods.

Farm Productivity

Farm productivity increased due to increase of yield per unit area as well as addition of new/ alternative enterprises. In the first place, the crop yields increased due to adoption of recommended technologies and better use of farm resources. Secondly, addition of new enterprises added new commodities. However, considering the volume the data of individual farm, they are not included here.

Farm income

Farm income increased remarkably with whole farm intervention and the income varied widely with different farm categories. In marginal farms, the mean gross margin from homestead, crop, livestock and fisheries increased by 68.0, 115.4, 707.6 and 81.7 percent respectively. The business enterprises, however, showed a negative growth by 61.5 percent (Table-2). The overall increase of gross margin of the farm other than business was **??** percent over pre-intervention period.

In case of small farms, the increased gross margins in respective subsystems were 44.1, -40.4, 86.3 and 431.1 percent. The business ventures in this farm category, however, showed an increases gross margin of 139 and the overall increase was 25.6 percent, respectively. As compared to pre-intervention period (Table-3). The highest net benefit was obtained from fisheries subsystem, probably due to introduction of improved pond fishery technologies and bringing both ponds and backyard ditches in production.

	Before inter	rvention	After		
Subsystems	TVC	GM	TVC	GM	% Increase
	(Tk/farm)	(Tk/farm)	(Tk/farm)	(Tk/farm)	
Homestead	431	3916	714	6588	68.0
Crop	9191	4763	7541	10259	115.4
Livestock	1680	1238	12682	9998	707.6
Fisheries	2430	2370	1040	4307	81.7
Business	31460	29217	28048	11238	-61.5
Total	45192	41504	50025	42390	2.13

Table 2. Per farm cost and gross margin from different subsystems of integrated farming by marginalfarm category at FSRD site Goyeshpur, Pabna 2002-03

Table 3. Per farm cost and gross margin from different subsystems of integrated farming by small farm category at FSRD site Goyeshpur, Pabna 2002-03

	Before int	tervention	After int		
Subsystems	TVC GM		TVC	GM (Tk/farm)	% Increase
	(Tk/farm)	(Tk/farm)	(Tk/farm)		
Homestead	340	2376	207	3425	44.14
Crop	13579	29552	7866	17611	-40.41
Livestock	1330	3228	982	6014	86.30
Fisheries	650	2312	605	12280	431.14
Business	1300	6800	18750	16250	138.97
Total	17199	44268	28410	55580	25.55

In case of medium farms the homestead sector showed slight increase in gross margin (10%) while both crop and business subsystems showed negative effect. The livestock and fisheries sectors showed increase of gross margins by 357.8 and 138.6 percent, respectively. Due to negative returns in crop and business sectors, the overall gross margin was reduced to only 7.78 percent in this farm category.

	Before int	tervention	After inte		
Subsystems	TVC	GM	TVC	GM	% Increase
	(Tk/farm)	(Tk/farm)	(Tk/farm)	(Tk/farm)	
Homestead	202	3643	346	4009	10.00
Crop	32138	40197	19215	38493	-4.24
Livestock	1195	3303	4829	15121	357.80
Fisheries	831	2550	4950	6084	138.59
Business	12760	10600	250	1275	-87.97
Total	47126	60293	29590	64982	7.78

Table 4. Per farm cost and gross margin from different subsystems of integrated farming by medium farm category at FSRD site Goyeshpur, Pabna 2002-03

Family Labour Utilization

Utilization of surplus family (viz. women, children) and hired labor increased due to huge intervention of technologies in integrated farming. The higher participation of women in agricultural activities made positive impact on equity issues within the family and the community as a whole.

Changes in Food habit and food security

During the pre-intervention period, the farmers consumed much less amount of vegetables, fruits and animal protein as compared to post-intervention period. Introduction of the newly developed year round vegetable production model, raring of layer and broiler chickens, fish polyculture in seasonal and perennial ponds and ditches, etc. ensured availability of and consumption of balanced and nutritious food to all members of the households. The per day vegetable production averaged 1.57 kg/farm with the new model, which can fulfill the requirement of five member farm family.

Impacts

The following general impacts were observed after intervention of technologies through holistic approach in integrated farming:

- 1. In integrated farming system (IFS) farmers are preserved the kitchen waste, manures, crop residues, animal waste, poultry litter, cowdung at their farm level scientifically and using properly for crop production, which ultimately helped to improve soil fertility and moisture conservation, thereby reducing environmental pollution in order to get sustainable agricultural production.
- 2. Through holistic approach each and every production unit was effectively utilized for generating more cash income.
- 3. Unlike traditional practices of agriculture activity where the cash is expected only at the time of disposal of the output, the integrated farming provides flow of cash to the farmers round the year from different enterprises like egg, milk, meat, vegetables, fish, fruits etc.
- 4. Timely application of recommended seeds, fertilizers and plant protection measure in holistic approach helped to boost production. The same technology was rapidly disseminated to many farmers around the program.
- 5. The holistic farm approach directly and indirectly changed in food habit, nutritional status, health care, clothing and sanitation, saving pattern and borrowing of the practicing farmers.
- 6. Integration of crop enterprise with livestock and fisheries got advantage of complementary and supplementary relationship among them, which have created more employment opportunity and better utilization of resources.
- 7. Integrated farm units were used as centers of agricultural development in the local area, where neighbor and other farmers and visitors are acquiring new technical know how leading to quickly dissemination of farm innovations.

Golapganj, Sylhet

Three farms were intervened for consecutive four years till 2001-02. However, due to discontinuation of funding support, the intervention continued with only one farm in 2002-03. The family profile and the account of farm resources are given in Table 1 and 2.

Table 1. The family profile of the farmer

Туре	Occupation	Education	Male	female	Total
Children (<15 yrs)	St.	School going	3	1	4
Adult (15-60 yrs)	H/w, Ag, St	II-XII	4	4	8
Old (above 60 yrs)	-	VII	1	1	2
Total			8	6	14

* H/w- House wife, Ag-Agriculture, St-Student

Table 2. Land resources of the farmer (dec):

Land Type	1997-98	1998-99	1999-2000	2000-01	2001-02	2002-03
Cultivable	8+21*	8+21*	8+101*	8+171*	8+171*	23+170*
Homestead	22	22	29.5	29.5	29.5	40
Ponds and	27	27	27+20*	27	27	27
ditches						
Open land	2	2	2	2	2	2
Waste land	27	27	27	27	27	16.5
Total	86+21*	86+21*	66.5+121*	93.5+171*	93.5+171*	108.5+170*

*Area under lease

The farmer has bought 7.5 and 15 decimal of land in 1999-2000 and 2002-03. He has also developed 10.5 decimal wasteland for cultivation adjacent to homestead area in 2002-03.

Technologies for Intervention

A good number of proven technologies were used to intervene the farm resource base covering all major subsystems as shown in Table 3.

Table 3. List of interventions in different subsystem of the farmer:

Subsystem Interve	entions							
A. Crop sector i) T.	T. Aus – BR 26							
ii) T.	T. Aman - BRRI Dhan 32							
iii) To) Tomato - Manik, Ratan, BARI Tomato-6,8,12							
iv) Or	nion - Tahirpuri							
v) Ca	bbage - Atlas-70							
vi) Bo	oro - BINA-6, BRRI Dhan-29							
vii) M	ustard - Improved Tori-7, BARI Sarisha-9							
viii) Kł	nira and Sweet gourd - using bait trap for controlling fruit fly.							
ix) Ch	iickpea- Annigeri, BARI Chola-2,3							
B. Homestead sector 1)	Country bean – intercropped with muknikachu and turmeric.							
11)	Vegetable seedling raising technology							
111)	Sapling of different truits							
1V)	Muknikachu - Bilashi							
v)	Bottle gourd – BARI Lau-I							
V1)	Guava - Kazi piara, BARI Piara-1							
V11)	Lemon - Seedless							
viii)	Tomato Manile Datan DADI Tomato 6.8.12							
IX)	Denikashu Latirai							
X) vi)	Pilikachu - Lathaj Pibbed gourd							
XI) vii)	Okro BADI Dharash 1							
XII) viii)	Honey bee rearing							
xiii)	Top working of jujube							
XIV) XV)	Fertilization of existing fruit trees							
XV)	retuization of existing full trees							
C. Livestock i)	Fayoumi rearing							
ii)	Vaccination of poultry							
D. Fisheries i)	Mixed polyculture							

Productivity of different commodities before and after intervention

The productivity of different commodities before intervention was very low as compared to that of intervention period. Intervention with new/improved technologies and putting all available resources in production of additional commodities, the yield and production of all commodities increased tremendously (Table 4). The gross margin of almost all intervention/enterprises increased tremendously with resultant increase in the MBCR. The overall economic impact of four years (98-99 to 02-03) of integrated farming is shown in Table 5. Before intervention the farmer obtained a gross margin of Tk. 15744 with Tk. 2514, 11430, 600 & 1200 respectively from crop, homestead, livestock and fisheries sub systems. The total variables cost at before intervention was Tk 7567. But

after intervention, the gross margin increased up to 529% (average of five years) and their sectorial contribution were Tk. 41452, 39345, 3868 and 14310 from crop, homestead, livestock and fisheries, respectively (Table 5). The average total variable cost of production in integrated farming over five years was Tk. 28451.

Resources		Technologies used and benefit drawn											
Туре	Area (d)	Before	interventio	After intervention (2002-2003)									
		Technolog y	Prod. (kg)	GM (TK)	TVC (TK)	Technology		Prod. (kg)	GM (TK)	TVC (TK)	MBCR		
a. Crop MHL-1	30*	T. Aus (Local) T.Aman (Local)	195 G, 265 S 310 G, 426 S	1905	1816	T. Aus (BR-26) T. Aman (BR-32) Tomato (M, R)	:	552G,604S 564G,651S 5785	27980	8620	4.83		
MHL-2	8	T. Aus (Local) T.Aman (Local)	74 G, 96 S 118G, 154 S	609	793	T. Aus (BR-26) T. Aman (BR-32) Brinjal Onion Cabbage (At-70)		157G,182S 175G,205S 340 115 342	4715	1911	4.67		
L	90*					Boro (BINA-6, BR Dhan-29)	RI 2′	160G, 2946S	10245	4581	3.24		
MHL-3 Foot Path	50* 18 (pit)					Mustard Squash Sweet gourd		120G,198S 95 28	1256 487	813 73	2.55 7.67		
VIHL-4	15					Tomato Okra Lalshak Amaranth		2185 125 100 500	15627	4028	4.88		
Sub total	-			2514	2609				60310 (+2299%)	20025	4.32		
b. Homestead Open land-1	i 17	Country bean	1710	11080	4338	C. bean Wax gourd seedling Sapling Mukhikachu		965 1364 32800 950 156	27994	6656	8.30		
hatches	2					B. gourd		98	421	127	4.32		
Roof New Diantation, Fertilization		B. gourd	100	350	20	B. gourd Guava (Kazi, BARI-1) Lemon (Seedless Coconut)	127 344 252 25	657 2060	47 197	12.37 11.48		
ree stem Open land-2	7.5	Not in use				Potato yam Tomato (Manik,ra Panikachu C. bean R. gourd	tan)	44 246 450 684 54	335 13852	50 2576	7.70 6.38		
Open land-3 Honey bee	10.5					Panikachu Honey Box (sell)		150 7 3 no.	1500 5340	450 2710	4.33 2.97		
Silk cotton Sub total				11430	4358	Silk cotton		70	4200 56359 (+393%)	665 13478	7.32 5.93		
Chicken Duck		Egg	310 no.	600	250	Egg Egg	1670 no. 1045 no.	3710 2060	565 364	10 6.	.86 65		
d. Fisheries	12	Traditional	13	600	250	Mixed	340	5770 (+861% 9524	2376 2 376	8 . 5	0 1 05		
Pond 2	15	Traditional	14	700	200	polyculture Mixed	430	11932	3118	4.	85		
Sub				1200	350	polyculture		21456 (+1688%)	5494	4.	94		
Total				15744	7567			143895 (+814%)	39927	4.	96		

Table	4. Farm	n productivity	and returns	by	intervention	ı in	different	farming	subsystems	of integrate	ed
	farm	at FSRD site	e, Golapgonj	, Sy	ylhet during	200	02-03				

Resource	Before in (199	tervention 7-98)	After into (Average of 9	ervention 8-99 to 02-03)	MBCR	Benefit				
	GM (Tk)	TVC (Tk)	GM (Tk) TVC (Tk)			over (%)				
Crop	2514	2609	41452.20	15184.40	4.10	1548.85				
Homestead	11430	4358	39344.80	8618.00	7.55	244.22				
Livestock	600	250	3868.40	785.12	7.11	544.73				
Fisheries	1200	350	14310.20	3863.80	4.73	1092.52				
Total	15744	7567	98975.6	28451.32	4.99	528.66				

Table 5. Economic comparison between farmer's old practice and newly adopted technologies of the farmer at FSRD Site, Golapgonj, Sylhet during 1997-98 to 2001-02

Impact on Farm Income and Expenditure Pattern

The farm income consistently increased over the years due to continuous improvement of farm productivity due to adoption of improved technologies and addition of new enterprises and introduction of of-farm activities. Likewise the farm expenditure was also increased many folds for obvious reasons. The income and expenditure statement of the farm throughout the intervention period is shown in Table 6.

Resources	Before intervention	After intervention (Tk)								
	1997-98	1998-99	1999-00	2000-01	2001-02	2002-03				
A. Income(Gross return)										
Crop sub sector	5123	43170	39280	45015	75383	80335				
Homestead sub sector	15788	28743	48301	41966	50967	69837				
Livestock sub sector	850	1300	4450	5020	5798	6699				
Fisheries sub sector	1550	5200	11500	20220	27000	26950				
Off-farm	-	-	22000	20000	11000	16000				
Total	23311	78413	125531	132221	170148	199821				
B. Expenditure										
Crop sub sector	2609	9428	13191	15503	17775	20025				
Homestead sub sector	4358	5300	7820	6772	9720	13478				
Livestock sub sector	250	300	950	1020	726	929				
Fisheries sub sector	350	1200	2800	3925	5900	5494				
Kachabazar	3700	4100	3800	4200	4500	4850				
Food	8000	9000	11000	12000	12500	13600				
Clothing	2300	4800	5650	6230	7500	10600				
Education	400	1650	1840	2200	2000	8000				
Mediacal	700	1200	900	3000	1400	1800				
House repairing	-	2600	3050	20000	2000	3800				
Refreshment	400	1800	2300	2850	4000	5200				
Land purchase	-	-	25000	-	-	48500				
Land development	-	-	-	-	-	4200				
Marriage ceremony	-	-	-	-	40000	-				
Paddle thresher	-	-	-	-	-	21000				
Mobile	-	-	-	-	-	9000				
Others	220	800	1200	1500	1500	1900				
Distribution	100	800	1000	1000	1200	1400				
Total	23387	42978	80501	80200	110721	173776				
Balance	-76	35435	45030	52021	59427	26045				

Table 6: Income and expenditure statement of the farmer (in Tk)

Employment generation and women labour utilization

After intervention more human labour was required for year round production activities. It was observed that unemployed labour of farm family had decreased with increase of crop intensification. The extra work created by intervention was shared among the family members. The total workload borne by women was more than men, but heavy work such as land preparation, load carrying, making trellis and marketing was done by men. Harvesting of vegetable, feeding of poultry, mulching and weeding of vegetable, seed processing and storing were done by women. It was observed that about 75% labour was supplied from the farmer's own family. The rest was supplied by the hired casual labour particularly in transplanting, weeding and harvesting of field crops. In homestead areas hired labour was required in repairing drainage system, making trellis etc.

Impacts of interventions on family welfare

Child education, clothing and house repairing cost increased due to enhanced income earned by the family (Table 6). In the year 2000-2001 medical cost slightly increased due to old age illness. Cost of kachabazar like vegetable, spices, fishes, eggs etc. are relatively static whereas the standard of living improved gradually. The dwelling house was expanded and household sanitary system was improved and purchased new furniture. The social activities of the farm family has also been increased remarkably.

Sustainability of technologies and farmers reaction

Now this family is treated as bank of seedlings of different vegetable and fruits. By using improved seedling raising techniques, he sells seedlings of different vegetable over the year. In the last three years he sold and distributed 138300 vegetable seedlings. He charted fertilizer doses of different fruits and showed in signboard, so that all the farmers of the area can be benefited. A 15-days training program on integrated farming (both male and female participants) jointly organized by members associated with this library and OFRD, BARI. The associate members of library cultivated mustard and tomato taking lease of fallow land of the area and this created encouragement among the farmers of the locality. Thus his residence worked as a center for technology transfer.

Lebukhali FSRD Site, Patuakhali

The study was carried out with two farms representing the small and one farm representing the large category at Lebukhali FSRD site, Patuakhali - a predominantly tidally flooded area offering very limited scope of crop diversification. The study was initiated in 2001-02. The profile of the intervened farms is given in Tables 1 and 2.

Туре		Farmer I			Farmer II			Farmer III		
	Male	Female	Total	Male	Female	Total	Male	Female	Total	
Children (<15 Yr)	3	2	5		-	-	3	1	4	
Adult (15-60 Yr)	3	1	4	3	1	4	-	1	1	
Old (>60 Yr0	-	-	-	-	-	-	1	-	1	
Total	6	3	9	3	1	4	4	2	6	
Effective family labour	2	1	3	1	1	2	1	1	2	
Permanent hired labour	-	-	-			-	-	-	-	
Casual hired labor	-	-	-	1		1	-	-	-	

Table 1. Family size and labor availability of the farms at Lebukhali site

Children are considered as half labor to calculate effective family labor.

Туре		Area (decimal)	
	Farmer I	Farmer II	Farmer II
Own cultivated land	100	112	80
Rented in/shared in	-	160	100
Mortgaged in	-	120	-
Fallow land	-		
Hone stead	85		
Pound/ditch	8		
Orchard/Garden (out of HS)	13		
Total	126	732	270

Table 2. Farm size of selected farmers at Lebukhali site

Technologies used for intervention

The technologies such as improved cropping patterns, crop management practices, sorjan cropping of vegetables, agro-fishery practices developed over the years at the site through farming systems research were used as interventions in relevant sectors. For livestock and fish production, technologies developed by BLRI and BFRI were used. A list of the technologies is given in Table 3.

Crop Subsystem	Technologies for intervention	Remarks
1.Sorjan cropping	Bed-1 : Stem amranth – Okra – Bitter gourd – Red amaranth – Tomato – Country bean	For vegetable production in tidally
	Bed-2 : Indian spinach – Bitter gourd – Vegetable seedlings – Cabbage – Cauliflower – Country Bean	flooded area. 28mx11m in 5 beds.
	Bed-3 : Papaya + Chili + Ribbed gourd + Country bean	
	Bed-4&5 : Banana + Gimakalmi + Snake gourd + Red amaranth + Brinjal + Morma	
	Trellis over furrow: Creeper vegetables	
2. Field crops	CP 1: Potato (No-tillage) –T.aus (BR-27) –T.aman (local)	
	CP2. Mungbean (BARI Mung 5) – T.aus (BR-27) – T. aman	
	New crop: Summer tomato	20m long and 2.3m
Homestead Subsystem		
1. Year round vegetable	Bed 1: Danta/ Ridged gourd - Tomato	9m x 9m in 5 beds
production	Bed 3: Danta – Kangkong - Brinial	
	Bed 4: Kangkong - Lalshak + Radish	
	Bed 5: Ladies finger – Spinach/Cabbage	
2. Homestead trees	1. Jujubi budding 2. Mango Hopper Control	
Agro-fishery in minipond	North bank:	
	Inner slope : Snake gourd – Bottle gourd	
	Bank top : Banana – Red amaranth / Brinjal	
	East bank:	
	Outer slope : Cucumber – Country bean	
	Pond top – Piece 1 : Okra – Spinach / Ol kopy	
	Pond top – Piece 2 : Okra – Red amaranth / Ol kopy	
	West Bank:	
	Outer slope : Ribbed gourd – Country bean	
	Inner slope : Snake gourd – Bitter gourd	
	Pond top-Piece 1: Indian spinach-Red amaranth/ Cauliflower Pond top-Piece 2: Indian spinach - Coriander / Tomato	
	South bank :	
	Inner slope : Snake gourd – Bitter gourd.	
	Pond top – Piece 1 : Radish – Brinjal.	
	Pond top – Piece 2 : Vegetable seedlings – Brinjal.	
	Fish: Rui : 20 Nos.	
	Catla : 20 Nos.	
	Silver carp : 30 Nos.	
Lingstock subsystem	Common carp: 20 Nos.	
Livesiock subsystem	2. Vaccination to poultry birds	
	3. Deworming of cattle	

Table 3. Technologies used for intervention

Name of Technologies	Area coverage (Decimal/No.)							
	F	-1	F	-2	F-3			
	2001	2002	2001	2002	2001	2002		
Sorjon Cropping	-	-	8	8	-	-		
Agro-Fishery Minipond	9	9	-	-	9	9		
Potato (No-tillage) – T.aus (BR-27) – T.aman (L).	40	40	50	60	50	40		
Mungbean (BARI Mung -5)-T.aus (BR-27)-T.aman	42	50	200	100	50	50		
Homestead Production :								
Vegetable production round the year	2	4	2	4	16	16		
Summer Tomato production	-	-	-	-	2	4		
Mango hopper control (No.)	5	5	8	8	4	4		
Top working on jujubee plants (No.)	2	2	3	3	1	1		
Broiler rearing (No.×batch)	200x3	200x5	200x3	200x5	200x5	200x5		
	100x2		100x2					
Deworming of Cattle (No.)	3	3	5	5	3	3		
Vaccination to poultry birds (No.)	10	15	15	15	35	30		

Table 4. Extent of interventions made for improvement in different farms at Lebukhali FSRD site, Patuakhali

Farm Productivity

Although the holistic approach was adopted, a partial intervention was made with respect to available resources in all the three farms. As such no attempt has been made to asses the overall farm productivity and income rather, the productivity of the interventions itself was evaluated deliberately. The productivity of the interventions is shown in Table 5.

Table	5.	The	overall	productivity	of	different	interventions	of	integrated	farming	(average	of .	3
		farm	ners) at F	SRD site, Le	buk	chali, Patu	akhali						

Sector/ components	Before intervention yield (kg/ha)	After intervention yield
		(kg/ha)
Field crops		
Mungbean	500-600	1000-1200
T.aus (local)	2000-2200	-
T.aus (MV)	3000-3300	3500-4000
T.aman (local)	2500-2800	3000-3500
T.aman (MV)	3000-3500	3800-4500
Chilli	500-900	1000-1300
Cowpea	900-1000	1300-1500
Zero tillage potato	-	25000-30000
Agro-fishery mini pond		
Vegetables	-	1370
Fruits	-	165
Fish	-	40
Vegetable production round the year	-	350
Sorjan cropping		
Vegetables	-	510
Fruits	-	725
Homestead production		
Mango hopper control, Jujubee top	-	100-150% yield increased
working, management practices for fruit		over farmers' practice
trees and creeper vegetables		
Livestock production	-	Tk 2000 nert return per
Broiler/and layer		batch of 100 birds.

The productivity of field crops increased due to adoption of improved varieties of mungbean and rice, use of recommended management practices for each crop especially balanced fertilizer, weed control and pest management. System based technologies like No-tillage Potato-T.Aus-T.Aman and Mungbean-T.Aus-T.Aman cropping patterns sustained and increased productivity of each crop with balanced fertilizer management practices.

Sorjon cropping and Agro-fishery practices in mini pond also increased production of both vegetables and fish considerably. Homestead production system of all three farmers was very poor before intervention. Homesteads are usually densely planted with various trees many of which are unproductive. All homesteads are situated in raised land by digging pond(s). Vegetable growing space is very scarce. However, the homestead production system was intervened with year round vegetable production model and enough vegetables were produced for family consumption even in crisis periods. Mango hopper control produced tremendous effect to increase mango production.

In the livestock system, all farmers had cattle, poultry and duck, though the existing productivity was very poor. Broiler rearing, vaccination to poultry bird and deworming of cattle were introduced. Broiler rearing was a very new in the region and was very successful. Price of broiler chicken in local market was high in comparison to other area, but demand was somewhat low. Each farmer completed five batches of broiler within one year. The mortality rate was 2-3% and production was 1.5-1.7 kg per bird within 45 days of rearing. Only one farmer in a batch suffered serious mortality of birds from cold injury.

Cost and returns

Both costs and returns increased due to integrated farming in all the farms. However, the rate of return on investment increased substantially in integrated farming and the MBCR of different subsystems ranged from 1.5 to 12.1. The overall MBCR ranged from 1.5-1.6 (Table 6).

	В	efore interve	ention	After	n		
Sector/practices	TVC	GR	GM	TVC	GR	GM	MDCD
	(Tk)	(Tk)	(Tk)	(Tk)	(Tk)	(Tk)	MDUK
			Farmer-1				
Field crop production	8743	14249	5506	23234	51068	27834	2.54
Homestead production	115	2580	2465	569	7013	6444	9.76
Livestock production	-	-	-	63600	82584	18984	-
Total	8858	16829	7971	87403	140665	53262	1.58
			Farmer-2				
Field crop production	49566	76245	26679	69813	117535	47722	2.04
Homestead production	445	4460	4345	891	9857	8966	12.10
Livestock production	-	-	-	62550	9857	18960	-
Total	50001	80705	31024	133254	208902	75648	1.54
			Farmer-3				
Field crop production	16347	27595	11248	30204	56516	26312	2.09
Homestead production	600	5410	4810	8410	24453	16043	2.44
Livestock production	-	-	-	41000	52650	11650	-
Total	16947	33005	16058	79614	133619	54005	1.6

Table 6. Cost and benefit of integrated farming (average of two years) at FSRD site, Lebukhali, Patuakhali

Labour utilization

Implementation of intervention generated a huge number of employments in all the farms in both genders. Specially, in implementing agro-fishery practices in mini pond, homestead vegetable production and broiler rearing, woman participation was higher (Table 7).

		Before inter	vention		After intervention					
Sector/Practice	Ov	vn	Uirad	Total	Owi	n	Uirad	Total		
	Female	Male	niied	Total	female	Male	niieu	Total		
Farmer-1										
Field crop production	20	32	18	70	36	47	37	120		
Homestead production		Negligi	ible		4	2	-	6		
Livestock production	-	-	-	-	30	30	-	60		
Grand total	20	32	18	70	70	105	37	212		
Farmer-2										
Field crop production	75	134	202	441	99	198	284	581		
Homestead production	-	-	-	-	3	3	-	6		
Livestock production	-	-	-	-	40	20	-	60		
Grand total	75	134	202	441	142	221	284	647		
			Farmer-3							
Field crop production	28	62	36	126	65	98	48	211		
Homestead production	6	-	-	6	52	58	26	136		
Livestock production	-	-	-	-	25	11	74	383		
Grand total	34	62	36	132	142	167	74	383		

Table 7. Labour utilization (man days) of integrated farms at Lebukhali FSRD site, Patuakhali

Farm income and expenditure:

Farm income and expenditure was the major criteria for measurement of living standard of cooperative farmers. Though it was very difficult to assess the actual income of and expenditure of a farm family due to unpredictable food cost, it was found that, after intervention, farm income and expenditure increased markedly in all the three farms. Before intervention, all three farmers were negative in their balance sheet (Table 8).

Table 8. Income and ex	xpenditure pattern	of integrated farms	s at FSRD site,	Lebukhali, Patuakhali
------------------------	--------------------	---------------------	-----------------	-----------------------

Farmer	Before int	ervention	After intervention						
	Expenditure (Tk)	Income (Tk)	Exper	nditure Γk)	Income (Tk)				
			2001	2002	2001	2002			
Farmer-1	33118	37475	141543	148562	147885	158350			
Farmer-2	99211	97955	213104	226805	222402	241026			
Farmer-3	46047	48245	127214	136208	140289	146524			

Palima FSRD site, Tangail

Integrated farming system studies were carried out at FSRD site, Palima, Tangail for four years ending 2001-02 and an integrated system module for subsistence small farm livelihood system have been developed. The module have been published as a booklet and made available to all concerned. However, during the reporting year, the interventions were continued with four farms with particular emphasis to homestead based enterprises with a view to continue maximum utilization of homestead based resources for household food and nutrition security and income generation.

The result presented in the following tables indicates that depending on the area available and technologies adopted, the productivity varied considerably from farm to farm. But it is remarkable that by very negligible monetary investment and proper utilization of homestead land resources, sufficient vegetables and fruits may be produced for year round family consumption as well as substantial amount of cash income may be generated by selling the marketable surplus of the produce.

Farm-1 (Small Category)

Table-1. Cost and return from different vegetables patterns and fruits grown in the homestead area at FSRD site,Palima,Tangail during July/2002-April/2003

N7 / 11	Area	Yield(kg)			Total	Total	TVC	GM
Vegetables	(m2)	Rabi	K-1	K-2	(kg)	value (Tk.)	(1K.)	(1K.)
Open sunny space								
Lalshak-Indiaspinach-lalshak	20	20	80	18	118	350	50	300
Spinach-Amarath-Lalshak	20	35	80	22	137	560	60	500
Mula-Okra-Inian pinach	20	110	30	70	210	765	40	725
Gardenpea-Gimakalmi-Gimakalmi	20	22	90	80	192	670	60	610
Lalshak-Lalshak-Lalshak	20	25	22	20	67	268	25	243
Total		212	302	210	724	2613	235	2378
Trellis								
BARI lau-1-Ash gourd	20	10	20		30	260	25	235
BARIsheem-1-S.gourd-B. gourd	20	80	30	10	120	670	40	630
Country bean-S.gourd-S.gourd	20	40	25	8	73	364	20	344
Total		130	75	18	223	1294	85	1209
Grand Total(1-2)		342	377	228	947	3907	320	3587

Fruit Trees:

Name of fruits	No. of	Yield	Total value	TVC	GM
	Trees	(kg)	(Tk.)	(Tk.)	(Tk.)
Olive	02	440	4400	50	4350
Lemon	01	04	100		100
Papaya	3	40	200	20	180
Dates	01	30	300	20	280
Mango	04	80	800	40	760
BARI litchi-1	02	10	1200	40	1160
Total		604	7000	170	6830
Grand Total(1-3)		1551	10907	490	10417

Farm-2 (Small category)

Table-2. Cost and return from different vegetables patterns and fruits grown in the homestead area at FSRD site,Palima,Tangail during July/2002-April/2003

	Area	Yie	eld (kg)		Yield	Return	TVC	GM
Vegetables patterns	(m ²)	Rabi	K-1	K-2	(kg)	(Tk.)	(Tk.)	(Tk.)
Open sunny space			•					
Potato –Indian spinace-Chill	20	38	17	19	74	824	215	607
I alabala I alabala Indian animath	20	10	10	25	52	270	50	228
Laisnak-Laisnak-Indian spinach	20	10	18	25	55	3/8 505	50	338
Amaranın-Amaranın-Laisnak	20	28	23	15	08	303 405	60 70	435
D totalo-Laisnak/okra	20	23	10	25	00	495	/0	425
Potato-Okra-G.kalmi	20	40	25	65	130	8/5	150	/25
G.kalmi-G.kalmi	20	120			120	720	50	670
Tomato-Okra-Dancha	20		50	300	470	1800	300	1500
Total		261	145	449	975	5597	895	4702
Trellis	10	-						• • • •
BARI lau-1-Sweet gourd	40	50	25	-	75	450	150	300
BARIsheem-1-S.gourd/sp.gourd	30	62	10	33	105	1016	200	186
Country bean-Ash gourd	30	58	40	-	98	676	200	476
Bitter gourd round the year	20	40	-	-	40	600	100	500
Sheem-sweet goyurd	15	20	50	-	70	510	150	340
Sheem -cucumber	12	25	20	-	45	350	150	200
Total		255	145	33	433	3602	950	2652
Shady area								
Nut seedling	12	200 (no.)	-	-	-	600	60	540
Marshy area								
Latiraj Kachu	30	80	-	-	80	960	50	910
Pond bank								
Sweet gourd	40	100	-	-	100	560	50	510
BARI sheem-1	10	40	-	-	40	320	50	270
Back vard								
Potato yam	2(no.)	12	-	-	12	120	-	120
Fruit trees	()							
Seedless lemon	01	200 (no)	-	-	200	400	-	400
Papaya	160	680	-	-	680	4780	200	4580
Baromasy drumstick	01	10	8	-	18	270	-	270
Total		1322	8		1130	8010	410	7600
Grand Total		1838	298	482	2538	17209	2255	14954

Farmer-3

Table 3. Cost and return from different vegetables patterns and fruits at homestead area in FSRD site,Palima,Tangail during July/2002-April/2003

Vegetables pattern	Area (m^2)	Y	ield(kg)		Total	Total	TVC (Tk)	GM (Tk)
vegetables pattern	(111)	Rabi	K-1	K-2	(kg)	(Tk.)	(1K.)	(1K.)
Open sunny space	·							
Mula-Mula –Indian spinace	16	25	120	110	255	985	150	835
G.kalmi-Amaranth-Lalshak	16	15	60	8	83	370	30	340
Garlic-Okra-Lalshak	16	3	35	5	43	365	60	305
Tomato-patshak-Amaranth	16	25	30	50	105	550	55	495
Mula-Lalshak-Okra	16	117	5	20	142	536	75	461
G.kalmi-G.kalmi-G.kalmi	16	25	40	45	110	880	50	830
Total <i>Trellis</i>		210	290	238	738	3686	420	3266
BARI lau-1-Ash gourd	2 +2 (no)	30 (no.)	40 (no)	-	225	700	30	670
BARIsheem-1-Cucumber	3 +3 (no)	120	10	-	130	1060	20	1040
Total Shadv area					355	1760	50	1710
Zinger	10m2			05	05	200	20	180
Marshy area								
Kachu	10	50	-	-	50	150		150
Pond bank								
Naper grass	10	30	-	-	30	60		60
Back yard								
Potato yam	3 (no.)	12	-	-	15	150	-	150
Fruit trees								
Seedless lemon	04	15	-	-	15	225	-	225
Papaya	05	75	-	-	75	600	50	550
Banana	05	250	-	-	62	250	30	220
		(no)						
Guava	10	300	-	-	300	3600	100	3500
Mango	03	200	-	-	200	3000	150	2850
Juckfruit	03	15	-	-	15	225		225
		(no)						
Nut	06	15	-	-	15	750		750
Total					782	9210	350	8860
GrandTotal(1-7)					1875	14656	820	13836

Farmer-4

Table4.	Cost and return from different vegetables patterns and fruits grown in the homestead area at
	FSRD site,Palima,Tangail during July/2002-April/2003

	Area	Yield(kg)			Total	Total	TVC	GM
Vegetables	(m2)	rabi	K-1	K-2	yield (kg)	value (Tk.)	(Tk.)	(Tk.)
Open sunny space							1	
Lalshak-Amarath-Amaranth	16	10	39	124	173	589	100	489
Mula Patshak-Amaranth	16	50	17	10	177	716	200	516
G.kalmi-G.kalmi-G.kalmi	16	30	33	30	93	465	50	415
Amaranth-Indianspinach- amaranth	16	35	39	124	198	594	100	494
Chilli-Chilli-Chilli	16	3	2	4	9	180	25	155
Total Back yard		128	130	292	650	2544	475	2069
Potato yam Fruit trees	03				50	500	20	480
Seedless lemon	04	12	-	-	12	300	-	300
Papaya	10	-	-		290	1450	200	1250
Guava	05	45			45	450	100	350
Mango	03	200			200	3000	150	2850
Juckfruit	01	15(no)			15	225		225
Total					612	5925	470	5455
Grand Total					1262	8469	945	7524

A STUDY ON FARMER'S PRACTICE OF GROWING LOTKON (Baccaurea sapida) AT SHIBPUR, NARSINGDI

Abstract

A study was carried out at Shibpur MLT site, Narsingdi to know the agronomic and economic potentials of lotkon, associated problems and to identify researchable issues for the development of lotkon during December'02 to January'03. Fifty lotkon growing farmers from Shibpur Upazila under Narsingdi district were selected randomly for collecting data. On an average, farmers of this area have been growing lotkon for 14 years. Average area was 0.45 ha with 113 plants per farm. Most of the farmers (68%) planted lotkon under the shade of Jackfruit trees while some (22%) planted lotkon to both mango and Jackfruit. Average fruit yield was recorded 60 kg/plant while the mean highest-ever fruit yield was 96 kg/plant. On an average, Tk.1500/- could be earned from a single tree whereas gross margin per hectare was Tk. 342250/-. A high level of benefit-cost ratio (22.83) indicated that Lotkon was a highly profitable crop. Family labour was utilized well in growing Lotkon as farmer along with his children performed most of the activities like pit preparation, planting, harvesting, marketing etc.

Introduction

Lotkon (Baccaurea sapida Muell.-Arg.) is a fruit having taste acid to sweet. It is known as 'Bhubi' in some places of Bangladesh. It is also known as Burmese grape, called tempui in Malaya, lutqua in India and mai fai in Thailand (Morton 1987). FAO reported that the species Baccaurea sapida (Roxb.) Muell.-Arg. is synonyms of the species (Mafai) Baccaurea ramiflora Lour. and B. wravi King ex Hook.f., belongs to the family Euphorbiaceae. It is native to southeast Asian region and found growing wild as well as under cultivation in Nepal, India, Myanmar, South China, Indo-China, Thailand, the Andaman Islands, and Peninsular Malaysia. The tree can grow up to 25 m tall. The leaf is simple, alternately arranged, with petiole. It is ovate to ovate lanceolate in shape and 10-20 x 4-9 cm in size. Tomentose inflorescences appear on branches and on the trunk. The male racemes are 3-8 cm long; flowers are fascicled on very short rachises with 4-5 sepals, and 4-8 stamens. The female racemes are 14 cm long and are bome lower on the trunk. Female flowers are solitary, with 4-5 sepals, 3-locular ovary and 2-lobed stigmas. The fruits are glabrous and 2.5-3.0 cm in diameter. The fruits can be of various colours from yellowish, pinkish to bright red. Morton (1987) described about B. sapida as "The tree grows to 30 or even 70 ft (9-21m). Leaves are rarely and then slightly hairy; male and female flowers are bome on separate trees. Fruit, in strands 6 to 12 inch (15-30 cm) long, is smooth, nearly round or oval, 1 to 11/4 inch (2.5-3.2 cm) long; skin turns from ivory to yellowish or pinkish-buff or sometimes bright-red. The pulp is not translucent; is whitish, occasionally deep-pink near the seeds; varies from acid to sweet". In Bangladesh, lotkon is popular to people of all ages. It comes to market during the months of June-July. Still it is a minor crop but price is equivalent or higher than good varieties of mango. Recently lotkon has got importance as an exportable item to foreign countries, particularly middle-east and Europe. From this point of view, it is the high time to give proper attention to this crop. Narsingdi district is well known for growing Lotkon. Farmers of some unions under Shibpur Upazila grow Lotkon extensively. Literature regarding this crop was rare and only botanical description was found from literature search through internet. So, there was a need to record its existing agronomic practices, potentials and problems and socio-economic aspects as well. Hence the study was designed to achieve the following objectives.

- To know the management practices of growing Lotkon
- To assess present agronomic and economic potential of Lotkon
- To identify problems associated with Lotkon cultivation
- To identify researchable issues for the development of Lotkon

Materials and Methods

The study was carried out at Multi-location Testing (MLT) site under On-Farm Research Division (OFRD), Bangladesh Agricultural Research Institute (BARI), Shibpur, Narsingdi during December 2002 to January 2003. Shibpur Upazila under Narsingdi district was selected purposively as the farmers of this area grow Lotkon extensively. The study area included the villages namely, Askitala, Joynagar, Ashtaani, Gilaber of Joynagar Union and the villages Murgiber and Naukaghata of Josohar Union under Shibpur Upazila of Narsingdi district. Data were collected from randomly selected 50 Lotkon growing farmers. A group of researchers conducted farmers' interview to collect data using pre-tested questionnaire. After verification and compilation, data were analyzed statistically and presented in tabular form.

Results and Discussions

1.0 The Lotkon plant and its environment

It was found that lotkon grows well under shade of other trees but also grows in open field. Most of the farmers (68%) planted lotkon considering Jackfruit as shading tree i.e. spaces in between Jackfruit trees, some farmers (22%) have planted lotkon to both of mango and Jackfruit while others planted under mango only. According to FAO, it is cultivated in the home garden and intercropped with other tropical fruits like durian, rambufan, and mango. The land type of the lotkon growing areas was high land belongs to Madhupur Tract having red clay soils (AEZ 28). On an average, farmers of this area have been growing lotkon for 14 years (range: minimum 5 to maximum 35 years). Area under lotkon cultivation per farm was on an average 0.45 ha (with range: min. 0.16 ha to max.1.75 ha). Number of lotkon trees per farm varied from 25 to 560 with an average of 113 trees per farm. However, average number of trees per hectare was 246.

2.0 Farmer's practices for growing Lotkon

- 2.1 *Propagation*: From Table-1 it was found that all farmers (100%) under study used saplings of local variety as the propagating material. Seeds were used to raise saplings. According to FAO, fresh seeds germinate in a matter of day, therefore, seed germination is the common method of propagation. Farmers collected saplings mostly (92%) from local sources while only 8% of the respondents used seedlings from own source.
- 2.2 Land and pit preparation: None of the farmers' ploughed land before planting Lotkon, rather 100% of them planted sapling by making pit. The size of pit varied from one farmer to another but most of the respondents (86%) mentioned approximate size of the pit as 30 x 30 x 30 cm (Table 1). The pit was prepared on the same day of planting in most cases (86%).
- 2.3 *Planting time*: 50% of the farmers planted Lotkon during June-July while 45% of them planted saplings in June (Jaisthya-Ashar) and rest of the farmers in August-September.
- 2.4 *Plant spacing*: In most (78%) cases plant to plant spacing of Lotkon was 4-5m. However, 8% of the respondents planted saplings at 6-7m spacing while others planted saplings at spacing of 8m or more.
- 2.5 Application of fertilizers and manures: None of the farmers applied any manure or fertilizer in the pit before planting seedlings but 42% of the respondents applied 15-20 kg cow dung to growing or fruiting plants but not regularly.
- 2.6 *Intercultural operations*: About 26% of the respondents pruned their Lotkon trees once during August-September (Bhadra), 8% of the respondents pruned the trees during September-October (Ashwin) while others did not practice pruning (Table 1). None of the respondents applied irrigation or weeded the Lotkon field.
- 2.7 *Ratio of male and female plants*: In most cases (62.5%), farmers did not allow male plants to grow. Others allowed some male plants in their garden but the ratio varied widely. In 15% cases, the ratio was 1: 4-10 (male: female), the ratio 1: 11-20 was also found in 15% cases and in 7.5% cases the ratio was 1: 22 & above (Table 1).

Practice	Farmer's response	% of respondents
1. Propagating material	 Sapling 	100
2. Source of propagating materials	 Locally collected 	92
	 Owned 	8
3. Variety of Lotkon	 The local variety only 	100
4. Land preparation	 Did not plough land 	100
5. Planting technique	 Making pit 	100
6. Time of pit preparation	 Same day 	86
	 1-4 days before planting 	10
	 5-10 days before planting 	4
7. Size of the pit	 30 x 30 x 30cm (approx) 	86
	 23 x 23 cm (approx.) 	6
	 No definite size 	8
8. Spacing (plant to plant)	■ 4 – 5 m	78
	■ 6 – 7 m	8
	■ 8 & above	14
12. Planting time	 June (Jaistha-Ashar) 	45
	 June-July (Ashar-Shravan) 	50
	 Aug-Sept (Bahdra-Ashwin) 	5
 Application of manures & fertilizers in pit 	 Did not apply 	100
14. Fertilizer application to	 Did not apply 	58
growing/fruiting plants	 15-20 kg CD/plant 	42
15. Irrigation	 Did not apply 	100
16. Pruning	 Once during Aug-Sept 	26
	 Once during Sept- Oct (Ashwin) 	8
	 Did not practice 	66
17. Weeding	 Did not practice 	100
18. Shading tree to which Lotkon	 Jackfruit 	68
has grown as mixed/inter crop	 Mango 	10
_	 Both Jackfruit & Mango 	22

Table 1. Farmer's management for growing Lotkon at Shibpur, Narsingdi

2.8 Shading trees: About 68 per cent of the respondents had grown Lotkon in association with Jackfruit while 22% of them planted Lotkon to both Jackfruit and Mango (Table 2). Age of most (45%) of the shading trees varied from 41-60 years and were planted at plant to plant spacing of 5 to 10 m in most (65%) cases. Lotkon was planted more than 5m apart from the nearest shading tree in most cases (67%) while rest of respondents (33%) planted Lotkon at a distance of 3-5m from the shading trees (Table 2).

Table 2. Shading trees used l	v farmers for	growing Lotkon	at Shibpur, Narsingdi
Tuble 2. Bliading frees used	y furthers for	SIOWING LOCKON	a omopui, raisinga

Practice	Farmer's response	% of respondents
1. Shading tree to which Lotkon has	 Jackfruit 	68
grown as mixed/inter crop	 Mango 	10
	 Both Jackfruit and Mango 	22
2. Age of the shading trees	 10-20 yrs 	25
	 21-40 yrs 	30
	• 41-60 yrs	45
3. Spacing of the shading trees	■ 5 – 10m	65
	 Above 10m 	35
4. Age of Lotkon trees	• 6-10 years	30
	 11-15 years 	45
	 16 & above 	25
5. Distance of Lotkon from	■ 3 – 5m	33
shading tree	 Above 5m 	67

- 2.9 *Fruit harvest*: Most (50%) of Lotkon plants belonged to 11-15 years of age (Table 2). Fruits were first harvested 3-4 years after planting saplings (farmers planted 3-3.5 year old saplings). Fruits were harvested mostly during June-July in a single harvest and the harvest duration extends for one month. In Thailand the fruits are harvested in June-July (FAO). Farmers determined the harvesting stage by yellow colour of the fruits.
- 2.10 *Post harvest operations*: They did not practice any post harvest operations except arrange them in the basket and/or transport for marketing.
- 2.11 *Shelf-life*: According to farmers, Lotkon could be stored for 1-2 days only. It got discolour quickly. Farmers did not face any problem for storing the crop as they sold it immediate after harvest.

3. 0 Agronomic and Economic Potential of Lotkon

3.1 Agronomic potentiality of Lotkon

According to most of the farmers, fruit set in Lotkon was usually well and in some cases, huge fruits starting from base of the trunk to the branches were observed. Average fruit yield/plant was recorded 60 kg while the mean highest-ever yield (farmers were asked to mention the highest fruit yield/tree irrespective of age they obtained so far) was 96 kg/plant. On an average, there were 246 Lotkon trees per hectare and thus yield obtained last year was 13.69 t/ha. However, the highest-ever fruit yield as mentioned by the farmers was on an average 16.63 t/ha (Table 3).

Potential yield	Mean	Ra	inge	Standard
		Max.	Min.	Deviation
Per plant (kg)	60	19	120	4.72
Per hectare (ton)	13.69	3.43	32.16	7.21
Highest ever				
per plant (kg)	96	35	168	6.68
per hectare (ton)	16.63	4.01	37.23	8.03

Table 3. Showing the yield potential of Lotkon at Shibpur, Narsingdi

3.2 Economic potentiality

All most all (98%) respondents mentioned that they got appropriate price of Lotkon and faced no problem for its marketing. It was found that, on an average, Tk. 1500/- could be earned from a single Lotkon tree. They earned a high gross margin of Tk. 327258/ha. Total cost of production included labour (Tk. 6800/ha), sapling cost (Tk. 2460/ha), transportation cost (Tk. 2744/ha) and the cost for cow dung (Tk. 2988/ha) was also considered as 42% of the farmers applied it to growing /fruiting plants. Benefit-cost ratio (22.83) revealed that Lotkon was a highly profitable crop (Table 4). All Lotkon growing farmers under study mentioned that their economic condition had improved positively due to Lotkon cultivation and they expressed interest to grow Lotkon in more land as the crop was profitable.

Table 4. Economics of Lotkon cultivation at Shibpur, Narsingdi

Average gross	Gross return	Total cost of production	Gross margin	BCR
return/tree (Tk)	(Tk/ha)	(Tk/ha)	(Tk/ha)	
1500/-	342250/-	14992/-	327258/-	22.83
D' CI	1			

Price of Lotkon = Tk. 25/kg

4.0 Socio-economic aspects of Lotkon cultivation

4.1 Marketing of Lotkon

Most of the respondents (64%)sold their produce in the local market. About 26% of the farmers sold Lotkon from both garden and market while 10% from garden only. In most cases (86%) farmers sold their produce to the Bepari while others sold to both Bepari and ultimate consumers. None of respondent faced any problem in marketing of Lotkon

4.2 Involvement of labour

Lotkon was not found a very labour intensive crop. Once it was planted, no labour was required until it started bearing fruits, as farmers did not practice any intercultural operation except applying cowdung to growing/fruiting trees in some cases. Hence, requirement of labour was mostly for harvesting and marketing of the fruits. Labour required for different activities for growing Lotkon are presented in Table 5.

Activity	Required labour/ha				
	Hired	Family	Total		
1. Pit preparation	10	5	15		
2. Seedling planting	5	5	10		
3. Intercultural operations	15	5	20		
4. Harvesting	20	5	25		
5. Marketing	10	5	15		
Total	60	25	85		

Table 5.Labour requirement for growing Lotkon at Shibpur, Narsingdi

4.3 Utilization of family labour

According to all of the respondents (100%), family labour (including farmer himself, wife and children i. e. son and daughter) were utilizing in different activities for growing Lotkon but their degree of participation varied depending on the nature of activity. Farmer himself actively participated in all of the activities needed for Lotkon cultivation. Table 4 showed that farmer along with his children performed most of the activities like pit preparation (42%), seedling planting (48%), and intercultural operations (62%) etc. While 60% of harvesting and 76% of marketing of the crop was done by farmer and his children along with hired labour. However, farmer himself, children and his wife performed maximum (44%) of the processing activity (to make Lotkon ready for marketing) after harvest.

Table 6. I	Utilization	of family	labour in	Lotkon	cultivation	at Shibpur,	Narsingdi
		2					0

Activity	Involvement of labour (%)							
	f	f-1	f-ch	f-ch-l	f-w	f-w-ch	f-w-l	
1. Pit preparation	2	24	42	24	-	8	-	
2. Seedling planting	2	14	48	32	-	2	2	
3. Intercultural operations	4	12	62	14	-	8	-	
4. Harvesting	4	28	-	60	-	8	-	
5. Marketing	-	16	4	76	4	-	-	

Note: f = farmer; ch = children; w= wife and l = hired labour

4.4 Disposal pattern of Lotkon

Farmers sold out most (98%) of the Lotkon grown in their garden. Rest of the produce was consumed by own family members and gifted to relatives or neighbours. Most (58%) of the respondents mentioned that all members of the family like to consume Lotkon while according to others children consumed Lotkon most.

4.5 Countries of exporting Lotkon

It was known to most of the farmers that Lotkon was exported to foreign countries but most (92%) of them could not mention name of the countries. According to some farmers, Lotkon were exported to Middle East countries. Some other mentioned the countries like Japan and UK.

4.6 Farmer's preference to Lotkon

Farmers were asked to rank eight fruits (including Lotkon) with taste close to Lotkon but most common and locally available. Lotkon occupied 4th position in order of preference by 70 per cent of the respondents while mango was in 1st position according to 98% of respondents (Table 6).

Fruits	Ranked by farmers (%)	Rank offered
Mango	98	1 st
Litchi	68	2 nd
Orange	60	3 rd
Lotkon	70	4^{th}
Pomello	34	5 th
Hog pulm	48	6 th
Guava	56	7 th
Black berry	62	8 th

Table 7. Farmer's preference to Lotkon compared to some other fruits at Shibpur, Narsingdi

4.7 Farmer's suggestion for the improvement of Lotkon

Suggestions as mentioned by the farmers were as follows.

- i. Yield of Lotkon may be increased through fertilizer application and controlling flower and fruit drop.
- ii. Lotkon got discolour and rotten very quickly. Arrangement of cold storage can help better marketing and ensure higher price of the crop.

5.0 Problems Associated with Lotkon Cultivation

The only significant problem as mentioned by the farmers was drying of branches from the tip i.e. die back. It is assuming that there might have a relation with pruning during August-September to this problem (die back). Of course, the actual cause for the problem should be identified. Among other problems flower and fruit drop might get consideration. Problems regarding Lotkon cultivation as mentioned by the respondents are mentioned in Table 8.

Problem	Number of citation
1. Branches get dried from the tip (die back)	48 (52.7%)
2. Red insect damage leaves	8 (8.8%)
3. Curling of leaf	2 (2.2%)
4. Flower drop	15 (16.5%)
5. Fruit drop	10 (10.9)
6. Theft	05(5.5%)
7. Quarrel with neighbours	03 (3.4%)
Total	91 (100%)

Table 8. Problems regarding Lotkon cultivation as mentioned by the respondents

6.0 Research and Development Issues

i. Identification of insect-pest and diseases and/or other causes affecting the yield of Lotkon and recommendation/development of suitable control measures.

- ii. Assessment of actual yield potential of Lotkon considering age of the plant, number of trees/unit area in the Jackfruit-Lotkon and Mango-Lotkon system, and also total yield potential of the cropping systems per unit area (from Agro-forestry perspective).
- iii. Development of appropriate agronomic practices like, land and pit preparation, spacing, application of fertilizer and manures, weeding, pruning/training, irrigation for higher yield of Lotkon under Jackfruit-Lotkon and Mango-Lotkon system.
- iv. Determination nutritive value of green and ripe fruit and also processed food items.
- v. Study on storability i.e. shelf-life of Lotkon and to find suitable and simple storing technique(s) to tackle the problem of short shelf-life of Lotkon.
- vi. Preparation of different processed food items like, fresh fruit packed in small container without preservative, pickle, jam/jelly, cooked food items etc.
- vii. To find out the marketing channel of Lotkon
- viii. Some basic research is needed to know growth habit, adaptation to variable environment, genetic variability, mode of pollination, propagation, male and female ratio, identification of male and female plant at early stage of growth etc.

Conclusion

Lotkon is a highly potential crop from both agronomic and economic point of view. There is a vast scope to explore and exploit potentiality of the crop. Development of appropriate agronomic practices including planting technique, fertilizer management, intercultural operations, management of inter/mixed crops etc. along with insect-pest management and post-harvest technologies will greatly increase yield and economic potentiality of the crop. Higher price and export value of the crop further emphasized to draw attention to take care of it at the moment. Cultivation of lotkon may be extended all over the Modhupur Tract and other parts of the country having identical land and soil. Adaptability to variable land and soil should be tested to identify more area for its extrapolation.

Reference:

Morton, J, 1987. Fruits of warm climates. p. 220. www.hort.purdue.edu/newcrop/morton/index.html

FAO. http://www.fao.org/DOCREP/004/AB777E/ab777e04.htm

YIELD GAP ANALYSIS OF POTATO UNDER DIFFERENT MANAGEMENT SITUATION IN BANDARBAN AREA

Abstract

The study was conducted at Bandarban Sadar during 2002-03 to find out the causes of difference between yield level that obtained with better practice farmers plot and average practiced farmers plot. Results of the study revealed that yield gap between two farmers practice plot was found 4220 kg (27%) per hectare as well as gross margin gap was Tk.32825/ha. Cobb-Douglas production model, it was estimated that the key factors behind yield gap: TSP, MP and draft power significantly influenced on yield of potato. The research suggest that this apparent yield and economic gap can be minimized at farm level to follow recommended package of technologies and fertilizer should be ensured locally in reasonable price in time.

Introduction

Potato is grown in a limited area in Bandarban district especially at Balagata, Muslim para. Farmers are widely grown with local variety. It is usually observed that the yield of potato in farmers field differ from that obtained in research station or demonstration plot due to varietal performance of potato. In Bandarban areas most of the farmers cultivate local variety called dohajari variety of potato with traditional management practices resulting low average yield compared to HYV. The farmers do not follow recommended practices. But there are some farmers whose management is better compared to the average farmers and thus obtain better yield. In order to increase the production of potato to its maximum possible extent at farm level, it is necessary to identify the factors behind this yield. The study is, therefore, designed to estimate the yield and benefit differences of potato under two management practices and to identify the factors behind yield gap of potato cultivation. So, the study has been under taken with the following objectives:

- to find out the level of technology employed or input use of potato production at different situation;
- to estimate the yield and benefit gap of potato between two practice plot;
- to identify the factors that is responsible for yield gap of potato, So that policy can be made accordingly.

Materials and Methods

A total of 40 farmers plot were selected for the study which 20 plots were better practice farmers plot and 20 were average practice farmers plot. The first group who got comparatively higher yield and the rest were the lower yield. A total of 40 plots of 40 farmers were selected randomly to collect primary data. After collection of primary data the whole set were classified into above-mentioned two groups. Data for the study were collected during March-April, 2003 through survey method by using a pretested survey schedule.

Analytical technique of yield gap analysis

Cobb-Douglas production function was selected to quantify the relative contribution of different production factors to the yield gap between better practice and average practice farmers plot. Cobb-Douglass production function was used separately in order to identify the relative contribution of different production factors to the yield gap.

The Cobb-Douglas functional form of the multiple regressions is as follows:

 $Y = a X_1{}^{b1}X_2{}^{b2}X_3{}^{b3}X_4{}^{b4}X_5{}^{b5}X_6{}^{b6} X_7{}b^7X_8{}b^8$

The function can be linearised by transforming it into the logarithmic form:

 $Log Y = Log a + b_1 Log X^1 + \dots + b_8 Log X^8$

Where,

- Y = Yield gap between the better practice farmers plot and average practice farmers plot.
- $\begin{array}{l} X_1 = FYM (Kg) \\ X_2 = Urea (kg) \\ X_3 = TSP (Kg) \\ X_4 = MP (kg) \\ X_5 = Irrigation (Tk) \\ X_6 = Insecticide (Tk) \\ X_7 = Human labour (Tk) \\ X_8 = Draft power (Tk) b_1.....b_8 = Co-efficient of the respective variables. \end{array}$

Limitations

Qualitative production factors, such as spacing, date and time of different cultural operations might have a great impact on the variation to the yield gap, but these factors could not be included in the model.

Results and Discussions

Agronomic practices and technology employed

It was observed from the study that there were differences in agronomic practices as well as input use levels between BPFP and APFP. Better practiced plots received more amount of chemical fertilizer, Urea 480 kg/ha, TSP 530 kg/ha and MP 290 kg/ha than that of average practiced plots e.g. urea-440 kg/ha, TSP 420 kg/ha and MP 190 kg/ha. On the other hand better practice farmers used 8.9 t/ha cowdung but average practice farmers used 10 t/ha. Farmers did not use fertilizer rationally and it might be due to lack of proper knowledge and cash. Better practiced farmers were found to use more amount of fertilizer and this might be caused higher yield.

Cost of cultivation

The cost item was included as human labour, draft power, seed, fertilizer, cowdung, irrigation and insecticide used. It was found that average TVC was Tk.71197/ha for BPFP and it was Tk.72372 for APFP. It was observed that the average TVC was higher in APFP than BPFP due to improper management of average practice farmers plot.

Economic Returns of Potato cultivation

It has been seen from Table that the yield was found 15.49 t/ha for BPFP and it was 11.27 t/ha for APFP. The average market price of potato was calculated as Tk.7.5/kg. The gross return was found Tk.116175/ha for BPFP and which Tk.72372/ha for APFP. The gross margin was calculated at Tk.44978/ha for BPFP and it was Tk12,153/ha for APFP. The benefit cost ratio was found 1.63 for BPFP and 1.16 for APFP.

Yield and Benefit gap

It was found from Table 1 that the yield differences was 4220kg/ha between BPFP and APFP. The main causes of yield differences were that the farmers did not apply recommended dose of fertilizer, cultural management was not proper. The variable cost was differences as Tk.1175/ha between situation resulting the gross margin gap was found Tk.32825/ha between two management practices.

Contribution of key factors to the yield gap of potato

The Cobb-Douglass production function estimated the relative contribution of key factors in yield gap, which is presented in Table 4. The relative contribution of specified factors influencing yield gap can be explained from the estimates of regression equation.

The coefficient of gap in use of urea was found.0.326 implying that one percent increase in urea by APFP, keeping other factors constant, would decrease the yield gap by0.326 percent. Similarly the

coefficient of gap in use of TSP, MP and draft power cost was found 0.133, 0.364 and 0.428 respectively, implying that one percent increase in use of TSP,MP and draft power cost ,would decrease the yield gap by 0.133, 0.364 and 0.428 percent, keeping other factors constant.

It was found that the coefficient of multiple determinations, R^2 is 0.681 which means that the explanatory variable included in the model explained 68% of the variation in the yield gap. The relative contribution of specified factors influencing yield gap can be seen from the estimates of regression equation (Table 4).

The Elasticity of coefficient (Ebi) was found 0.592 means that the production function exhibits decreasing returns to scale, it means if all the inputs specified in the functions are increased by 1%, yield would have increased by 0.592 percent (Table 4).

The above mentioned results and discussions revealed that the production of potato can be increased by following recommended practices and yield gap can be minimized. It was found that urea, TSP, MP and cost of draft power played significant role in yield gap of potato cultivation. As a result the yield level of APFP can be increased by increasing use of urea, TSP, MP and draft power cost.

Recommendation

It is suggested to the farmers based on the findings of the study that in order to enhance yields, they should increase the use of Urea, TSP and MP and decrease the use of human labour.

Table1.	Level	of	technology	employed,	input	used	and	yield	obtained	of	potato	cultivation	under
	differe	ent r	nanagement	practices at	t Band	arban	Sada	ar, dur	ring 2002-	03			

Management factor	Better practiced farmers plot	Average practiced farmers plots		
Variety	Local (Dohajari)	Local (Dohajari)		
Number of ploughing	3-4	3-4		
Date of sowing	1st week , Nov.	2nd & 3rd Week, Nov.		
Seed rate (kg/ha)	1578.66	1497.06		
Fertilizer used (kg/ha):				
Urea :	480	440		
TSP:	530	420		
MP:	290	190		
Cowdung (t/ha)	8.9	10.0		
Number of irrigation	3-4	3-4		
Time of harvest	Last week Jan-Feb.	Last week Jan-Feb.		
Yield (ton/ha)	15.49	11.27		

Table 2. Dif	ference	in aver	age l	levels	of va	riable	costs	per he	ectare	between	BPFP	and	APFP	of potato
cul	tivation	at Hill	Vall	eys in	Band	larban	n Sadai	r, duri	ng 20	02-03				

Castitana	DDED		% of	total	Differences	
Cost items	DFFF	AFFF	BPFP	APFP	BPFP-APFP	
Human labour (Tk):						
Owned	20370	21200	41.39	43.16	- 1766	
Hired	9102	10038				
Sub-total:	29472	31238				
Draft power(Tk):						
Owned	4330	4001	9.41	8.48	559	
Hired	2370	2140				
Sub-total:	6700	6141				
Seed(Tk):						
Owned	5800	6510	16.62	15.51	612	
Hired	6040	4718				
Sub-total:	11840	11228				

Castitana	DDED		% of	total	Differences
Cost items	BPFP	APPP	BPFP	APFP	BPFP-APFP
Fertilizer(Tk):					
Urea	3075	2811	4.97	3.88	264
TSP	7390	7552	10.37	10.43	-162
MP	2855	2505	4.07	3.46	350
Sub-total	13320	12868	18.70	17.78	
Cowdung(Tk):					
Owned	2105	3562	6.04	7.82	-1357
Hired	2200	2100			
Sub-total:	4305	5662			
Insecticide (Tk)	972	831	1.36	1.14	
Irrigation(Tk)	4588	4404	6.44	6.08	
Total variable cost (Tk)	71,197.0	72,372.0			

Table 2. Contd.

Table 3. Situation wise average yield, yield gap, benefit and benefit gap per hectare of potato production under different management practices

Itoma	Situation						
Items	BPFP	APFP					
Yield (kg/ha)	15490	11270					
Market price @ Tk. 7.5/kg	7.5	7.5					
Gross return (Tk./ha)	1,16,175.00	84525.00					
Total variable cost (Tk./ha)	71,197.00	72372.00					
Gross margin (Tk./ha)	44,978.00	12,153.00					
BCR	1.63	1.16					
Yield gap (kg/ha)	4220 (27%)						
Gap in gross margin(Tk/ha)	32,825.00 (72%)						
Gap in variable cost(Tk/ha)	1175.00 8%)						

Table 4. Cobb-Douglas production function model estimate of determinants of yield gap in potato production in Bandarban district 2002-03

Explanatory variables and	BPFP	APFP	Gap between BPFP & APFP	Coefficients of determination
Yield (kg/ha)	15490	11270	4220	-
Intercept			-	2581
$X_1 = FYM (kg/ha)$	8900	10000	-1100	-0.383
$X_2 = Urea(kg/ha)$	480	440	40	0.326
$X_3 = TSP(kg/ha)$	530	420	110	0.133*
$X_4 = MP(kg)$	290	190	100	0.364**
X ₅ =Irrigation(Tk/ha)	4588.00	4404.00	184.00	-0.173
$X_6 =$ Insecticide(Tk/ha)	972.00	831.00	141.00	0.078
X ₇ =Human labour(Tk/ha)	29472.00	31238.00	-1766	-0.181
X ₈ =Draft power(Tk/ha)	6700.00	6141.00	559.00	0.428*
\mathbb{R}^2				0.681
E bi				0.592
F- statistics				1.59
No. of observation				20

* denoted 1% level of significance ** refers to 5% level of significance

YIELD GAP ANALYSIS OF WHEAT UNDER DIFFERENT MANAGEMENT SITUATION AT FSRD SITE, GOYESHPUR, PABNA

Abstract

The study was carried out at Farming Systems Research and Development (FSRD) site, Goyeshpur, Pabna to estimate the yield and benefit gap under different management practices of Wheat (Var. Kanchan) cultivation during April-May 2003. The study revealed that better practiced farmers plots (BPFP) gave higher yield (2.70 t ha⁻¹) than the average practiced farmers plots (APFP) (1.73 t ha⁻¹). The yield gap between BPFP and APFP was found 972 kg ha⁻¹ (56%) and that of benefit gap (gross margin) was found Tk. 5178.00 ha⁻¹ (83%). Using Cobb-Douglas production function model, it was estimated that urea, TSP and human labour played statistically significant role in yield gap between BPFP and APFP. The study suggested that the difference in yield and benefit could be minimized at farm level to increase the use of urea, TSP fertilizers and human labour in the APFP.

Introduction

Wheat is the second cereal crop in Bangladesh. It can play a vital role in food requirement in the national perspective. Production area of Wheat is increasing day by day but the yield of Wheat does not increase in the same rate. The national average yield of Wheat was 2.27 t/ha in 1997-98 and 2.19 t/ha in 1998-99 (BBS, 1999). In the farmers fields the production efficiency of Wheat, like other crops is not satisfactory in the country. Varietal performance varied significantly from research station to farmers' field. Because the factors of production, both quality and quantity, are not maintained properly in the farmers' level. Amount and quality of different inputs used, sowing or planting time, intercultural operations etc. varied from research station to farmers' practice and also varied among the farmers cultivating Wheat. These might be the causes of such yield differences. In Bangladesh, most of the farmers cultivate Kanchan variety of Wheat with traditional management practices resulting low average yield. The farmers do not follow the recommended practices. But there are some farmers whose management is better compared to the average farmers and thus they obtain better yield. In order to increase the production of Wheat to its maximum possible extent at farm level, it is necessary to identify the factors behind this yield gaps. The study is, therefore, designed to estimate the yield and benefit differences of Wheat under different management practices and to identify the factors behind yield differences of Wheat under different management practices.

Materials and Methods

The study was carried out at Farming Systems Research and Development (FSRD) site, Goyeshpur, Pabna to estimate the differences in yield and benefit of Wheat under different management practices. The farmers' management practices were classified into two groups. The first group consists of betterpracticed 50 percent farmers (better practiced farmers' plot-BPFP) who got comparatively higher yield and the rest 50 percent were the average practiced farmers' plots (APFP). A total of 50 plots of 50 farmers with Wheat were selected randomly to collect primary data. After collection of primary data the whole set were classified into above-mentioned two groups. Data for the study were collected during April-May 2003 through survey method by using a pre-tested schedule.

A Cobb- Douglas production function was selected to quantify the relative contribution of different production factors to the yield gap between BPFP and APFP for being easy on logarithmic transformation. The function becomes a simple linear one and the co-efficient of the production factors are the elasticity of production.

The Cobb- Douglas functional form of the multiple regressions is as follows:

Y = a Xi Ui

or, $lnY = lna+b_1lnX_1+b_2lnX_2+b_3lnX_3+b_4lnX_4+b_5lnX_5+b_6lnX_6+Ui$

Where,

Y = Yield gap between better practiced farmers plot (BPFP) and average practiced farmers plot (APFP) (Kg/ha)

 X_1 = Difference in Urea (kg/ha)

 X_2 = Difference in TSP (kg/ha)

 X_3 = Difference in MP (kg/ha)

X₄= Difference in Gypsum (kg/ha)

 $X_5 = \text{Difference in Human labor (Tk/ha)}$

 X_6 = Difference in Mechanical power (Tk/ha)

a = Constant or intercept, $b_1, b_2, b_3, ----, b_6$ = Co efficient of respective variables and

Ui= Disturbance term

Results and Discussion

Agronomic practices and technology employed

It is evident from the study that there were differences in agronomic practices as well as input use levels between BPFP and APFP. Better practiced plots received more amount of chemical fertilizer (162-121-36-75 kg Urea-TSP-MP-Gypsum ha⁻¹) than that of average practiced plots (151-92-45-0 kg Urea-TSP-MP-Gypsum ha⁻¹) (Table-1). Sowing period also differed. Farmers did not use fertilizer rationally and it might be due to lack of proper knowledge and cash. Better practiced farmers were found to use more amounts of chemical fertilizers and this might be caused higher yield. It is observed that BPFP produced higher yield (2.7 t/ha) than that of APFP (1.73 t/ha). The yield gap was 972 kg/ha. It was found that farmers applied less amount of fertilizer (162-121-36-75 kg/ha urea-TSP-MP-Gypsum) than that of recommendation (180-140-40-110-9.6-7.5 kg/ha Urea-TSP-MP-Gypsum-Zinc-Borax) (BARC, 1997). This wide gap in fertilizer use might be the cause of such yield gap. It was observed that any of the farmers group do not used recommended dose of fertilizer but better practiced farmers were closer to the recommended dose of fertilizer.

Cost of cultivation

In case of BPFP and APFP the average total cost was found Tk 13555.00 and Tk 9591.00 respectively. The higher cost incurred in Wheat cultivation under better practiced plots compared to average farmers' practices was mainly due to higher use of material inputs and improved management practices (Table-2). The better-practiced farmers' plots obtained higher gross margin (Tk11393.00) than average practiced farmers' plots (Tk. 6215.00). It noticed that 41% gap in total cost caused 56% gap in grain yield and 83% gap in gross margin. It indicates that the cost incurred at average practiced farmers' plots less return to the farmers.

Contribution of key factors to the yield gap of Wheat

The Cobb-Douglas production function estimated the relative contribution of key factors in yield gap, which is presented in Table 3. The relative contribution of specified factors influencing yield gap can be explained from the estimates of regression equation.

The coefficient of gap in use of Urea was found 0.291 implying that one percent increase in urea by APFP, keeping other factors constant, would decrease the yield gap by 0.291 percent. Similarly the coefficient of gap in use of TSP and human labour was found 0.383 and 0.217 respectively, implying that one percent increase in use of TSP by APFP, keeping other factors constant, would decrease the
yield gap by 0.383 percent and one percent increase in human labour by APFP, keeping other factors constant, would decrease the yield gap by 0.217 percent (Table-3).

The co-efficient of multiple determinations R^2 was found 0.72 implying that the explanatory variables included in the model explained 72% of the variation in the yield gap of Wheat. The summation of all production co-efficient (Σ bi) was found 0.61, means that the production function exhibits decreasing returns to scale. It means if all the inputs specified in the function are increased by 1 percent, yield would have increased 0.61 percent. F value was found 2.79 indicated that all the included explanatory variables are important for explaining the gap in yield of Wheat production (Table 3).

The above-mentioned results and discussions reveal that the production of Wheat can be increased by following recommended practices and yield gap can also be minimized. It was found that urea, TSP and human labour played significant role in yield gap of Wheat production. As a result the yield level of APFP can be increased by increasing use of urea, TSP and human labour. The yield of average practiced farmers' plots can be increased by increasing use of these inputs.

Reference

- BBS. 1999 Statistical Pocket Book of Bangladesh, Statistics Division, Ministry of Planning, Govt. of the People's Republic of Bangladesh.
- BARC. 1997. Fertilizer Recommendation Guide-1997. Bangladesh Agricultural Research Council, Farmgate, Dhaka.

Razzaque, M. A. et al (1999). Hand Book of Agricultural Technologies, BARI, Joydebpur, Gazipur.

<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>		Situa	ations
51.	Management factor	Better practiced farmers'	Average practiced farmers'
по	_	plots	plots
01	Variety	Kanchan	Kanchan
02	Human labour (man-days)	90	52.5
03	No. of ploughing	2-3	2-3
04	Sowing period	30 Nov16 Dec.	3-22 Dec.
05	Seed rate (kg ha ⁻¹)	150	138.75
06	Fertilizer used (kg ha ⁻¹):		
	Total (Urea-TSP-MP-Gyp)	162-121-36-75	151-92-45-0
07	Irrigation (times)	1-2	1
08	Harvesting time	28 March-3 April	2-7 April
09	Yield (kg ha ⁻¹):		
	Grain	2700	1728
	Straw	2645	1372
Gap in	grain yield (kg)	972 ((56%)

 Table 1. Level of technology employed and yield obtained in Wheat cultivation under different management practices at Goyeshpur, Pabna during 2002-03

			(Tk/ha)
Itoma	DDED	ADED	Difference
Items	DPTP	AFFF	BPFP-APFP
Mechanical power	1800	1290	510
Human labour	6300	3675	2625
Seed	2100	1943	157
Fertilizer:			
Urea	1013	944	295
TSP	1755	1334	1160
MP	324	405	-108
Gypsum	263	-	263
Total cost	13555	9591	3964 (41%)
Main product	23625	15120	8505 (56%)
By- product	1323	686	637
Gross return	24948	15806	9142
Gross margin	11393	6215	5178 (83%)

Table 2. Difference in average level of variable	costs per hectare between BPFP	and APFP of Wheat
cultivation at Goyeshpur, Pabna 2002-	13	

BPFP = Better practiced farmers plot, APFP = Average practiced farmers plot

Table 3. Cobb-Douglas production function model estimate of determinants of yield gap in Wheat cultivation at Goyeshpur, Pabna during 2002-03

Variable	Co-efficient of determination
Intercept	9.32
X_1 Human labour (Man-days)	0.217* (0.182)
X_2 = Mechanical power (Tk)	0.311 (0.819)
$X_3 = Urea (kg)$	0.291* (0.135)
$X_4 = TSP (kg)$	0.383** (0.371)
$X_5 = MP (kg)$	0.236 (0.151)
$X_6 = Gypsum (kg)$	0.192 (0.286)
\mathbb{R}^2	0.72
F-statistics	2.79
Return to scale (\sum bi)	0.61
No. of observation	50

Figures in the parenthesis indicate standard error of mean ** Significant at 1% level, * Significant at 5% level.

FERTILIZER MANAGEMENT IN MAJOR CROPPING PATTERNS AT JESSORE AND PANCHAGARH DISTRICT

Abstract

The study was carried out at Multilocation Testing (MLT) Site Bagherpara, Jessore and Panchagarh, Dinajpur to identify the existing fertilizer management practices in major cropping patterns during January-March 2003. Boro-T.Aman, Mustard-Jute-T.Aman and Wheat-Fallow-T.Aman cropping pattern were identified as three major cropping patterns at Jessore whereas Boro-T.Aman, Wheat-Fallow-T.Aman and Potato-Jute-Fallow were identified as three major cropping patterns at Panchagarh. The study revealed that farmers do not apply recommended dose of fertilizer to their crop field. No general trend was found for using inorganic fertilizer to the crops. The amount of fertilizers varied among the crops but the recommendation was not followed in most of the cases.

Introduction

The rice-rice cropping systems with unbalanced use of inorganic fertilizer have deleterious effects on soil health. Application of fertilizers especially NPK, in balanced quantities is often advocated for sustaining high yields of crops (Bhuiyan *et al.*, 1991; Singh *et al.* 1973). In intensive rice cultivation with high yielding varieties, however, phosphate and potash application may be needed along with nitrogen for satisfactory rice yields. With the gradual spread of high yielding varieties (HYVs) of different crops in Bangladesh, it is necessary to assess the contribution of fertilizer elements to the grain yield of the crops. Among the factors that affect crop production, fertilizer is the single most important one that plays a crucial role in yield increased. Of the total nutrients used in the soil, nitrogen alone constitutes about 80 percent, which may lead to nutrient imbalance in soil-plant systems.

Significant carry over effects of different chemical fertilizers was observed in different studies (Balla, 1974; Gupta *et al.*, 1986). The first task for this purpose is to identify present fertilizer management practices in major cropping patterns. The study is, therefore, undertaken to identify the existing fertilizer management practices in major cropping patterns.

Methodology

The study was conducted at MLT site Jessore and Panchagarh. A total of 50 farmers at both locations were selected using simple random sampling technique for primary data collection. The survey was conducted with the help of a pre-designed schedule by direct interviewing the selected farmers. The collected information was edited, summarized and local units and measurements were converted into standard ones. The results were presented in tabular form.

Results and Discussions

Fertilizer management and crop performance

Organic manure like farmyard manure (FYM) was found to use in all major cropping patterns. Farmyard manure was applied in all the three first crops of the cropping patterns at Jessore. T.Aman did not receive any kind of organic manure when it is sequenced with either Boro, Wheat or Mustard (Table 1). The inorganic (NPKS) dressing as basal dose with Boro was 0-23-28-15 kg/ha in the Boro-Fallow-T.Aman cropping pattern. Top dressing of nitrogen @ 51 kg/ha was done for Boro in first installment, whereas 38 kg N/ha was applied in the second installment (Table 1). Farmers used higher amount of NPKS in T.Aman of Boro-T.Aman cropping pattern (Table 2). The farmers did not apply any Zn for Boro though it was recommended 1.50 kg/ha. In the Mustard-Jute-T.Aman cropping pattern, Mustard received 34-8-13-10 kg/ha NPKS against a recommendation of 70-15-17-13 kg/ha

NPKS. The other crop of the pattern, T.Aman received 84-18-25-16 kg/ha NPKS against a recommendation of 45-4-15-2 kg/ha NPKS (Table 2). In Wheat-T.Aman cropping pattern, Wheat received 65-16-20-13 kg/ha NPKS against a recommendation of 40-20-35-10-2-0.5 kg/ha NPKSZnB. Farmers use more amount of PKS in T.Aman of Boro-T.Aman and mustard-jute-T.Aman cropping pattern against recommendation. Farmers were found to apply no zinc fertilizers in any of the crops in the three major cropping patterns. Farmers received satisfactory level of yield of T.Aman in all the cropping patterns. But yield level of Mustard, Jute and Wheat was found lower compared to recommended yield.

In Panchagarh, farmers used cowdung in all the first crops of the cropping pattern and also in Jute in Potato-Jute cropping pattern (Table 3). They use 28 kg/ha P during top dress in potato crops of Potato-Jute-Fallow cropping pattern. Farmers did not used N in Potato-Jute cropping pattern in the 2nd top dressing. They received satisfactory level of yield from the three major cropping patterns except Wheat crop. Irrespective of cropping patterns, the amount of P and S used by the farmers was higher than that of recommendation. But farmers used less amount of other fertilizers except N in Boro and T.Aman of Boro-T.Aman cropping pattern and Potato crops in Potato-Jute cropping pattern (Table 4).

Trend of crop yield

Crop production status was reported to be stable by the 26 percent farmers at Jessore and 20 percent farmers at Panchagarh as because traditional cultivation, use of balanced fertilizers and regulars intercultural operation. Increasing trend of crop production was reported by the 56 percent farmers at Jessore and 64 percent farmers at Panchagarh due to the use of organic and inorganic fertilizer, modern variety and production technology, training and extension services as well as maintaining crop rotation. Decreasing crop production was reported by the 18 percent farmers of Jessore and 16 percent farmers of Panchagarh for not or less using of organic manure, flood, lack of quality seeds and decreasing soil fertility (Table 5).

Conclusion

Farmers do not apply recommended dose of fertilizer to their crop field. No general trend was found for using inorganic fertilizer to the crops. The amount of fertilizers varied among the crops but the recommendation was not followed in most of the cases. The farmers were found to apply higher amount of P in all the T.Aman crops of the major cropping pattern. But application of other fertilizers was less than recommendation. The unbalanced use of all the nutrients may lead to nutrient imbalance in soil plant systems and yield goal could not be achieved in most cases. Use of organic manure is negligible which may lead to a degradation of soil nutrient status. In order to enhance yield accurate dose of organic and inorganic fertilizer would be applied, improved variety should be adopted and extension service should be strengthened.

References

- Balla, H. 1974. The value of residual fertilizer NPK and phosphorus in a long-term experiment. Soils and Ferts. Abst. 38:292.
- Bhuiyan N I, A L Shah and G M Panaullah. 1991. Effect of NPK fertilization on the grain yield of transplanted rice and soil fertility-A long-term study. Bangladesh J soil Sci. 22 (1&2): 41-49.

Itom	Cropping pattern-I		Ci	ropping pa	attern-II	Cropping	pattern-III
nem	Boro	T.Aman	Mustard	Jute	T.Aman	Wheat	T.Aman
Variety used	BR-26	BR-11	Local,	Tossa	BRRIDhan33	Kanchan	BR-11
			Tori-7				
Sowing time	15 Jan.	15 July-	10-30	15-30	30 July-	15 Nov	15 July-
		15 Aug.	Nov.	March	15 Aug.	10 Dec.	7 Aug.
Organic Manure	1098	-	800	1733	-	4340	-
(kg/ha)							
Basal Fertilizer							
(kg/ha)							
Ν	-	-	-	-	-	-	-
Р	23	20	8	13	21	16	24
Κ	28	24	13	16	25	20	19
S	15	18	10	8	16	13	21
1 st TD of N	51	43	34	31	45	41	37
2 nd TD of N	38	29	-	-	39	24	31
Harvesting period	1-15	15-30	1-15	30 July -	1-25 Nov.	15-30	15 Nov
	April	Nov.	Feb.	10 Aug.		Mar.	10 Dec.
Grain yield (kg/ha)	5400	3734	639	2634	3400	3040	4268
By product (kg/ha)	3400	4539	731	5928	4123	3548	2308

Table 1. Agronomic performance of major cropping pattern at MLT site Bagherpara, Jessore

 $\overline{TD} = Top dressing$

Table 2. Nutrient application and productivity of the crops as compared to recommendation at MLT site Bagherpara, Jessore

			Nutrient	s (kg/ha)			Yield	(kg/ha)
Practice	N	D	K	S	Zn	В	Main	By
	14	1	K	5	ZII	Ь	product	product
			Bor	o-T.Aman c	ropping pa	attern		
Boro								
FP	89	23	28	15	-	-	5400	3400
Recom.	100	20	35	10	1.5	1.5	4500	-
T.Aman:								
FP	72	20	24	18	-	-	3734	4539
Recom.	70	8	20	4	-	-	3500	-
			Mustard	-Jute-T.Am	an croppi	ng pattern		
Mustard:								
FP	34	8	13	10	-	-	639	1731
Recom.	70	15	17	13	1	0.5	1200	-
Jute:								
FP	31	13	16	8	-	-	2634	5928
Recom.	65	7	20	4	-	-	3000	-
T.Aman :								
FP	84	18	25	16	-	-	3400	4123
Recom.	45	4	15	2	-	-	2400	-
			Whe	at-T.Aman	cropping p	attern		
Wheat:								
FP	65	16	20	13	-	-	3040	3548
Recom.	40	20	35	10	2	0.5	3500	-
T.Aman :								
FP	68	24	19	21	-	-	4268	5308
Recom.	70	6	20	4	-	-	3500	-

FP = Farmers practice, Recom. = Recommendation

Item	Cropping	pattern-I	Cropping	g pattern-II	Cropping	pattern-III
	Boro	T.Aman	Wheat	T.Aman	Potato	Jute
Variety used	BRRI Dhan 28	BR-11	Kanchan	BR-28	Cardinal	Tossa
Sowing time	6-12 Feb.	5-30 July	30 Nov 20 Dec.	10-25 July	10-20 Nov.	22 Mar 18 April
Organic Manure (kg/ha)	3055	-	2470	-	3529	1976
Basal Fertilizer						
(kg/ha)						
Ν	32	-	-	-	73	-
Р	18	14	23	15	40	16
Κ	27	20	34	17	71	18
S	10	8	13	6	15	18
1 st TD of N	48	64	67	32	63 28 (P)	54
2 nd TD of N	31	18	17	21	-	-
Harvesting period	May 20 June 6	Nov. 6- 23	March25 April 10	Nov.19 – Dec.15	Feb 10-28	July 16- Aug 5
Grain yield (kg/ha)	4916	3582	2395	3555	18381	2706
By product (kg/ha)	5821	5248	4322	5487	-	4940

Table 3. Agronomic performance of major cropping pattern at MLT site Panchagarh, Dinajpur

Table 4. Nutrient application and	productivity of the crops a	as compared to recomm	endation at MLT
site Panchagarh, Dinajp	ur		

			Nutrient	s (kg/ha)			Yield (kg/ha)
Practice	Ν	Р	K	S	Zn	В	Main product	By product
			Boro	-T.Aman c	ropping pa	attern		
Boro:								
FP	111	18	27	10	-	-	4916	5821
Recom.	100	15	45	8	1.5	-	4500	-
T.Aman:								
FP	82	14	20	8	-	-	3582	5248
Recom.	75	10	35	4	-	-	3500	-
		V	Vheat-T.A	man cropp	ing patteri	1		
Wheat:								
FP	84	23	34	13	-	-	2395	4322
Recom.	90	20	15	15	2	0.5	3500	-
T.Aman:								
FP	55	15	17	6	-	-	3555	5487
Recom.	75	10	35	4	-	-	3500	-
			Potato-Ju	te croppin	g pattern			
Potato:								
FP	136	68	71	16	-	-	18381	-
Recom.	100	20	80	10	-	-	20000	-
Jute:								
FP	54	16	18	5	-	-	2706	4940
Recom.	60	8	30	5	-	-	3000	-

FP = Farmers practice, Recom. = Recommendation

Viald status	Farmers responded (%)		Dansons			
Y leid status Jessore		Panchagarh	NCaSOIIS			
Stable	26	20	Traditional cultivation and fertilizer use and regular intercultural operation.			
Increasing	56	64	Organic and inorganic fertilizer use, regular intercultural operation, maintaining crop rotation, modern variety and production technology, training and extension service.			
Decreasing	18	16	No or less use of organic manure, decreasing soil fertility insect pest infestation and lack of quality seed.			

Table 5. Trend of crop yield during last 5 years as reported by the farmers at MLT site, Bagherpara, Jessore and Panchagarh, Dinajpur

TECHNOLOGY TRANSFER

a. Crops

Title	Location	Area (ha)/plant	Farmers involved (no.)	Yield (t/ha)	Impact
A. Oil seeds Mustard (var. BARI Sharisha-9)	Narikeli, Jamalpur	0.42	6	1.45	Farmer are interested to grow BARI Sharisha 8/9
B. Puises Chickpea (var.BARI Chola-2) Chickpea (var.BARI Chola-5)	Chabbishnagar Nachole, Barind	2.0 3.0	-	1.26 1.20	
C. Wheat Wheat (var. Protiva) Wheat (var. Satabdi)	Chabbisnagar Chabbisnagar	0.5 1.5	4 4	3.38 2.78	Shatabdi is recommend for large scale production
E. Vegetables Country bean (BARI shim-1)	Narikeli, Jamalpur	0.25	32	13.6	Recommended for large scale
Lady's finger (BARI Derosh-1)	Narikeli	0.31	23	11.5	Large scale extension programme
F. Root crops Kachu (Latiraj)	Narikeli, Jamalpur	0.95	9	15.28	Good market value & accept as good vegetable by the farms
b. Composting with kitchen and farmer waste	Narikeli Lebukhali Kalapara Borguna	13(heep)	13 20 15 10	Compost 621 kg/hap	Use in homestead garden
c. Seed exchange program Mustard (BARI Sharisha 9) Chickpea Wheat	Barind, Rajshahi "	8.0 9 2	40 60 10	1.10 122 2.85	
d. Crop Museum Wheat					
Var. Barkat Var. Protiva Var. Kanchan Var. Inkilab Var. Gourav Var. Akbar Var. Shatabdi Chicknea	Chabbishnagar Chabbishnagar Chabbishnagar Chabbishnagar Chabbishnagar Chabbishnagar Chabbishnagar	10x10 m " " "		2.63 3.33 3.18 3.0 3.25 2.43 2.98	
Deshi Chola BARI Chola 5 BARI Chola 3 BARI Chola 4 BARI Chola 2 Nabin Aniggeri	Chabbishnagar Chabbishnagar Chabbishnagar Chabbishnagar Chabbishnagar Chabbishnagar Chabbishnagar	а а а а	- - - - -	0.98 1.15 1.00 0.95 1.20 1.05 1.25	

Barley					
BARI Barley 1	Chabbishnagar	:	-	2.45	
BARI barley 2	"	-	-	2.35	
Local	Chabbishnagar	u	-	1.96	
Cheena	Chabbishnagar	u	-	1.00	
Kaon	Chabbishnagar	u	-	0.98	
Sesame	Chabbishnagar	u	-	0.68	
Niger	Chabbishnagar	u	-	0.99	
Linseed	Chabbishnagar	u	-	1.00	
Sunflower	Chabbishnagar	"	-	1.15	

e. Livestock

Date of	Name of the	Number of bird	Mortality rate before	Mortality rate after	Causes of death
vaccination	vaccine	vaccinated	vaccination (%)	vaccination (%)	after vaccination
15.6.02 to	BCRDV	465	95	10	Predator animal bacterial & parasitic diseases
30.4.02	RDV	1056	78	5	Economically viable & profitable
Total	1521				

SI.no.	Name of technology	No. of farmer	Area covered (ha)	Av. yield (ton/ha)	Output Impact/Farmers feedback
Α.	Creeper crops				
	BARI Lau-1	39	112 pit	35.5	Farmers appreciated its due to early and more fruiting with higher yield compare to local variety.
	BARI Seem-1	30	128 pit	18.3	Farmers appreciated BARI Seem-1 due to higher yield and softness as well as delicious to eat and market demand is high due to its attractiveness of colour than local one.
	BARI Seem-2	15	65 pit	8.5	
В.	Vegetables				
	BARI Tomato: Var. a. Ratan b. Manik c. BARI Tomato-8 d. BARI Tomato-12	4	0.16	53.5(av.) 65.4 45.3 49.2 54.1	Among the three varieties the yield performance of Ratan was good and farmers are agreed to produce it if the seedling are available there. Bacterial wilting and irrigation facilities were the major problem.
	Radish: Var. a. Tasakisan b. Druti c. Pinky	10	0.40	35.5 38 27.3 41.2	Farmers are very much interested to grow Pinky variety due its higher yield and market demand but seeds are not available there.
	BARI Begun-1(Uttara)	5	0.60	34.2	Less demand than local one
	BARI Data (Laboni)	25	0.20	-	Excellent acceptance at farmers' level due to higher profit and high market demand.
	BARI Dherosh-1	10	1.0	-	Farmer acceptance is high but good quality of seeds should be ensured at farmer level.
	BARI Latiraj	4	0.12	-	Farmers are agreed to produce it.
C.	Oil crops				
	Groundnut (Dhaka-1)	2	0.12	2.5	Farmers are agreed to mass production if the seeds are available
	Mustard (BARI Sarisha-9)	4	0.40	0.988	No demand at farmers level
D.	Cereal crops				
	Maize in block demonstration: Var. a. Barnali b. Koi Bhutta c. BARI Hybride-1	20	1.86	4.1(av.) 4.6 3.7 5.5	Farmers are agreed to maize production due to its higher demand in this area. Among this variety yield performance was good in BARI Hybride-1 and farmers are appreciated it. If seed are available farmers will be produced in large scale but irrigation
	d. Mohar			2.6	is main problem in dry season.
	BARI Kaon (Titas)	5	0.20	0.494	Less demand at farmers level
Е.	Pulses				
	BARI Mushur-4	5	0.008	0.893	Do
F.	Others				
	BARI Chula-5	5	0.008	1.25	Farmers are agreed to mass production if the seeds are available

Development Program, 2002-03 OFRD, BARI, Bandarban

Appendix

Sl no. Name Designation Remarks 1. Head quarter, Joydebpur 2. Dr. M Matiur Rahman Director (Res.) CSO 3. Dr. M Farid Uddin Mia CSO On LPR 4. Dr. M Abu Sufian CSO 5. Dr. M A Quayyum PSO 6. Dr. M Mustaque Ahmed SSO 7. Dr. M Yusuf Ali SSO Dr. M Mohabbat Ullah 8. SO 9. M Rafiqul Islam SO 10. Dilwar A. Choudhury SO 11. **Ouamrun-Naher** SO 12. M Akhtar Hossain SO Shippur, Narsinghdi 13. M Asaduzzaman SO Higher study Shavmpur, Raishahi 14. Dr. M Maznur Rahman PSO (WRC) Barind, Rajshahi 15. M Shafiqul Islam SO 16 M Abdus Salam SO 17. M Faruque Hossain SO Pabna 18. M Abdul Momin SSO Higher study 19. Ferdouse Islam SO 20. M Akkas Ali SO Higher study 21. M Rabiul Alam SO 22. M Shamim Hossain Mollah SO 23. M Obaidul Hoque SO Bogra 24. Md. Abdur Rahim SSO 25. Nur-E-Alam Siddique SO Dinajpur 26. S M A Jabber SO Rangpur 27.M Badirul Islam SSO 28. M Abdul Mannaf SSO 29. M Mohi Uddin SO Transfer to HRC 30. M Al Amin Talukder SO 31. A H M Mostofa Kamal SO 32. Selim Ahmed SO 33. Ashis Kumar SO Jamalpur 34. Dr. M Matiur Rahman SSO 35. M Golam Moula SSO 36. M Shamsur Rahman SO 37. M Rajab Ali SO

List of Scientists involved with On-Farm Research Division (2002-03)

Sl no.	Name	Designation	Remarks
	Tangail		
38.	M Mukhlesur Rahman	SSO	
39.	M Jamal Hossain	SO	Higher study
40.	M Aminur Rahman	SO	0
	Mymensingh		
41.	Dr. S M Asaduzzaman	SSO	
42.	Habib M Naser	SO	Higher study
43.	Nargis Sultana	SO	0
	Kishoregonj		
44.	M Helim Khan	SO	
	Jessore		
45.	M Nur Alam Mondal	SSO	
46.	M Asraf Hossain	SSO	
47.	M Kawser Uddin Ahmed	SO	
	Patuakhali		
48.	Sikder Rafiquzzaman	SSO	
49.	M Idris Ali Hawlader	SO	Higher study
50.	M Abdur Razzaque	SO	Higher study
51.	M Shahidul Islam	SO	0
	Faridpur		
52.	M Serajul Islam	SSO	
53.	M Ruhul Amin	SO	
	Khulna		
54.	Sheikh Mostafa Zaman	SSO	
	Kushtia		
55.	M Kamrozzaman	SO	
56.	M Alamgir siddiki	SO	Higher study
	Barisal		0
57.	M Shahidul Islam Khan	SO	
	Hathazari		
58.	Parimal C. Sarker	SO	
	Noakhali		
59.	A F M Fazlur Rahman	PSO	
60.	Dr. Mohammed Amin	SSO	
61.	Dr. Jasim Uddin	SSO	
62.	M Kamrul Hasan	SO	Higher study
	Sylhet		0
63.	Apurba K. Choudhury	SO	
64.	Md. Obaidullah Kaisar	SO	
	Comilla		
65.	M Safiqul Islam	SSO	
66.	M Muktadir Alam	SO	Higher study
	Khagrachari		C 7
67.	Mahmudul Hasan Nazrul	SO	
	Bandarban		
60	M Jamal Uddin	SO	